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Abstract

I extract some philosophical morals from some aspects of Lagrangian me-

chanics. (A companion paper will present similar morals from Hamiltonian me-

chanics and Hamilton-Jacobi theory.) One main moral concerns methodology:

Lagrangian mechanics provides a level of description of phenomena which has

been largely ignored by philosophers, since it falls between their accustomed

levels|\laws of nature" and \models". Another main moral concerns ontology:

the ontology of Lagrangian mechanics is both more subtle and more problematic

than philosophers often realize.

The treatment of Lagrangian mechanics provides an introduction to the sub-

ject for philosophers, and is technically elementary. In particular, it is con�ned

to systems with a �nite number of degrees of freedom, and for the most part

eschews modern geometry.

Newton's fundamental discovery, the one which he considered necessary to keep se-

cret and published only in the form of an anagram, consists of the following: Data

aequatione quotcunque uentes quantitae involvente uxiones invenire et vice versa.

In contemporary mathematical language, this means: \It is useful to solve di�erential

equations".

V. Arnold, Geometrical Methods in the Theory of Ordinary Di�erential Equa-

tions, Preface
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1 Introduction

1.1 Against the matter-in-motion picture

Lagrangian mechanics is one of the three great schemes of analytical mechanics, which

forms a major part of classical mechanics. The other two schemes are Hamiltonian me-

chanics and Hamilton-Jacobi theory; (sometimes, Hamilton-Jacobi theory is considered

a part of Hamiltonianmechanics). This paper is only about Lagrangian mechanics. But

its companion paper will give a similar discussion|with similar morals|of Hamilto-

nian mechanics and Hamilton-Jacobi theory. So I shall begin by celebrating analytical

mechanics as a whole, and arguing that all of it, i.e. all three schemes, deserves much

more philosophical attention than it currently gets.

Analytical mechanics is one main part, and one of the glories, of classical mechanics.

Its development is one of the triumphs, of both mathematics and physics, in the last

three hundred years. It runs from the early discoveries of Maupertuis and d'Alembert,

through those of Euler, Lagrange, Hamilton and Jacobi, and the application of their

theories to continuous systems (as in classical �eld theory), to the work of Poincar�e

and his twentieth-century successors in chaos theory, and catastrophe theory. This

development reveals the enormous depth and power of just a handful of ideas, such

as con�guration space, \least action", phase space and the Legendre transformation.

Besides, these ideas, and the theories of analytical mechanics that use them, underpin

in various ways the twentieth-century theories, quantum theory and relativity, that

overthrew classical mechanics. In short: a triumph|and a rich legacy.

But in recent decades, analytical mechanics, indeed all of classical mechanics, has

been largely ignored by philosophers of science. They have focussed instead on the

interpretative problems of quantum theory and relativity. There are of course good

reasons for this: among them, the enormous inuence of the new theories on analytic

philosophy of science, their undeniably radical innovations (e.g. indeterminacy, dynam-

ical spacetime) and philosophers' understandable desire to address the issues raised by

currently accepted physical theories.

But I fear there is also a worse reason: worse because it is false. Namely, philoso-

phers think of classical mechanics as unproblematic. Indeed, there are two errors here,

corresponding to what I will call the `matter-in-motion picture' and the `particles-

in-motion picture'. Here I will discuss the �rst, leaving the second to Section 2.2.2.

According to the matter-in-motion picture, classical mechanics pictures the world as

made out of bodies (conceived either as swarms of a vast number of tiny particles

separated by void, or as made of continuous space-�lling `stu�'), that move through a

vacuum in Euclidean space and interact by forces such as gravity, with their motions

determined by a single deterministic law, viz. Newton's second law.

Nowadays this picture is suÆciently part of \common sense" to seem unproblematic.

Or at least, it is part of the common sense of the \educated layperson", with memories

of high school treatments of falling balls and inclined planes! Certainly a great deal
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of work in contemporary analytic metaphysics of science uses this picture of classical

mechanics. Writings on such topics as laws of nature and physical properties often

appeal to the matter-in-motion picture, as a source of examples or counterexamples

for various metaphysical theses. For example, in debates about such theses as whether

laws could be `oaken', or Lewis' doctrine of Humean supervenience, the speculative

examples often concern particles, conceived in an essentially classical way, and how

they might interact with one another when they collide.2

So I agree that classical mechanics suggests the matter-in-motion picture; or to

be more speci�c, the elementary approach to classical mechanics, familiar from high

school, suggests it. But a moment's thought shows that the matter-in-motion picture

is problematic. For whether we conceive bodies as swarms of tiny particles, or as made

of continuous `stu�', there are troublesome questions about how bodies interact.

For example, if they are swarms of particles, how can two bodies interact? And

how can we explain the impenetrability of solids, or the di�erence between liquids and

solids? Indeed, how should we take individual particles to interact? A force between

them, across the intervening void (\action-at-a-distance"), seems mysterious: indeed

it seemed so, not only to critics of Newton's theory of gravity, but to Newton himself.3

On the other hand, if individual particles interact only on contact (as the seven-

teenth century corpuscularians proposed), we face the same sorts of question as confront

the alternative conception of bodies as made of continuous \stu�". For example, how

should we conceive the boundary of a continuous body (including as a special case, a

tiny particle), in such a way that there can be contact, and so interaction, between two

such bodies? And even if we have a satisfactory account of boundaries and contact,

there are questions about how to understand bodies' interaction. Considering for sim-

plicity two continuous spheres that collide and touch, either at a point, or if deformed,

over a �nite region: how exactly does each sphere exert a force on the other so as to

impede the other's motion (and limit its own further deformation)? Does each particle

(i.e. point-sized bit of matter) somehow exert a force on \nearby" particles, including

perhaps those in the other sphere?

These are hard, deep questions about the foundations of classical mechanics. They

were pursued and debated, not only by the giants of seventeenth century natural phi-

losophy; but also by their successors, the giants of classical mechanics from 1700 to

1900, including the heroes of analytical mechanics: Euler, Lagrange, Hamilton and Ja-

cobi. But despite the supreme empirical success that classical mechanics had achieved

by 1900, these and similar questions remained controversial|and were recognized as

scienti�cally signi�cant. So much so that in 1900 Hilbert proposed the rigorous axioma-

tization of mechanics (and probability) as the sixth of his famous list of open problems.

2Indeed, I think much contemporary philosophy is unduly wedded to the idea that the ontology

(\world-picture") of any physical theory must be close to this matter-in-motion picture: consider for

example discussions of \naturalism", or of the contrast between causes and reasons. But I shall duck

out of trying to substantiate these accusations, since they are irrelevant to my aims.
3For discussion and references, cf. e.g. Torretti 1999, p. 78.
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But soon afterwards research in the foundations of classical mechanics was overshad-

owed by the quantum and relativity revolutions. It was only after 1950 that it ourished

again, pursued as much by engineers and mathematicians, as by physicists. (It formed

part of a multi-faceted renaissance in classical mechanics; other aspects included ce-

lestial mechanics, much stimulated by spaceight, and \chaos theory", stimulated by

numerical analysis on computers.) And it remains a very active research area.

But not for philosophers! That is: most philosophers will recognize my list of

questions as ones with which the seventeenth century natural philosophers struggled.

But with the one exception of the mystery of action-at-a-distance, our philosophical

culture tends to ignore the questions, and (even more so) the fact that they are still a

focus of scienti�c research. There are at least two reasons, both of them obvious and

understandable, for this.

First (as I said above), the quantum and relativity revolutions have led philosophers

of science to concentrate on those theories' interpretative problems.

Secondly, there is a humdrum pedagogical reason, relating to the educational cur-

riculum's inevitable limitations. In the elementary mechanics that most of us learn

in high school, these questions are in e�ect suppressed. The problems discussed are

selected so that they can be solved successfully, while ignoring the microscopic consti-

tution of bodies, and the details of contact between them. For example, the bodies are

often assumed to be small and rigid enough to be treated as point-particles, as in ele-

mentary treatments of planetary motion; (where, as I conceded, the main mystery one

faces is the one acknowledged by philosophers|action-at-a-distance). And for some

simple problems about extended bodies, like a block sliding down a plane, one can

manage by adopting a broadly \instrumentalist" approach, in which for example, one

just assumes that each body is rigid (whatever its microscopic constitution), contact is

unproblematic, and all the forces on a body (including friction exerted at a boundary)

act on the body's centre of mass. One then determines the motion of each body by

determining the vector sum of all forces on it. (Pedagogy apart, I shall return to the

limitations of this approach to mechanics at the start of Section 3.) In short, one never

faces the questions above.

Of course, philosophers often augment high school mechanics with some seventeenth-

century mechanics, through studying natural philosophers such as Descartes, Hobbes

and Leibniz. But again curricular limitations impinge. Most philosophers' acquain-

tance with mechanics ends there. For around 1700, natural philosophy divided into

physics and philosophy, so that few philosophers know about how mechanics devel-

oped after 1700, and how it addressed these foundational questions. In particular, as

regards the eighteenth century: philosophers read Berkeley, Hume and Kant, but not

such �gures as Euler and Lagrange, whose monumental achievements in developing

analytical mechanics, and in addressing such questions, changed the subject out of

all recognition: a transformation continued in the nineteenth century by �gures like

Hamilton and Jacobi.

In addition to these two reasons, there may well be others. For example, we now
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know that quantum theory underpins the empirical success of classical mechanics in

the macroscopic world. (Somehow! There are many open questions, both philosophical

and technical, about the details: the quantum measurement problem, and the physics

of decoherence, are active research areas.) From this, some philosophers, especially

those with more instrumentalist inclinations, will conclude that we need not worry too

much about foundational questions about classical mechanics.

These reasons are obvious and understandable. But their e�ect|the belief that the

matter-in-motion picture is unproblematic (apart perhaps from action-at-a-distance)|

is unfortunate. It is not just that good foundational questions about classical mechanics

get ignored. There is also a loss to our understanding of modern philosophy of science's

origins. For it was not only the quantum and relativity theories that had an inuence on

philosophy of science; (as I mentioned). Before they arose, the lively debate over these

foundational questions also strongly inuenced philosophy of science. For example,

Duhem's instrumentalism was largely a response to the intractability of these questions.

To be sure, today's specialist philosophers of physics know perfectly well that the

matter-in-motion picture is problematic. Even in what seem the most unproblematic

cases, there can be both a wealth of intricate mathematical structure, and plenty of

philosophical issues to pursue. The familiar case of Newtonian point-particles interact-

ing only by gravity a�ords good examples. Most philosophers would say that surely

the mathematics and physics of this case is completely understood, and the only prob-

lematic aspect is gravity's acting at a distance. But the mathematics and physics is

subtle.

For example, Painlev�e conjectured in 1898 that there are collision-free singularities:

that is, roughly speaking, that a system of Newtonian point-particles interacting only

by gravity could all accelerate to spatial in�nity within a �nite time-interval (the en-

ergy being supplied by their in�nite gravitational potential wells), so that a solution

to the equations of motion did not exist thereafter. Eventually (in 1992) Xia proved

that �ve particles could indeed do this.4

As to philosophy, relationist criticisms of the absolute Euclidean space postulated

by Newton, and endorsed by the matter-in-motion picture, continue to be a live issue

(Belot 2000). And instead of the usual de�nition of determinism in terms of instanta-

neous states across all of space determining the future, alternative de�nitions in terms

of the states on open spacetime regions have been proposed and investigated (Schmidt

1997, 1998).

So much by way of exposing the errors of the matter-in-motion picture; (for more

discussion, cf. my (2004: Section 2, 2004a)). I now turn to the speci�c theme of this

paper and its companion: the philosophical morals of analytical mechanics.

4For more details, cf. e.g. Diacu and Holmes' splendid history (1996; Chapter 3).
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1.2 Prospectus

I will draw four such philosophical morals: (the morals will be the same in this paper

and its companion). Two concern methodology, and two concern ontology; and in each

pair, there will be a main moral, and a minor one. No doubt there are other morals:

after all, analytical mechanics is a vast subject, inviting philosophical exploration. I

emphasize these four partly because they crop up throughout analytical mechanics;

and partly because they all (especially the two main morals) arise from a common

idea.

Namely: by considering the set of all possible states of the systems one is concerned

with, and making appropriate mathematical constructions on it, one can formulate a

general scheme for representing these systems by a characteristic family of di�erential

equations|hence the quotation from Arnold which forms this paper's motto. As we

shall see, such a scheme has several merits which greatly extend the class of problems

one can solve; and even when one cannot solve the problem, the scheme often secures

signi�cant information about it. Though the details of the schemes of course vary

between Lagrangian, Hamiltonian and Hamilton-Jacobi mechanics, they have several

merits, and morals, in common.5

These schemes lie at a level of generality between two others on which philosophers

have concentrated: the very general level of \laws of nature" or \the laws" of classical

mechanics; and the level of a \model" (which in some philosophers' usage is so speci�c

as to be tied to a single physical problem or phenomenon). Hence my title.

Lagrangian mechanics is a large subject, and I cannot fully expound even its more

elementary parts. On the other hand, it is largely unfamiliar to philosophers, to whom I

want to advertise the importance of its details. So I must compromise: I shall describe

some central ideas|with a minimum of formalism, but with enough detail to bring

out my morals. But in a few places (including some whole Subsections!), I indulge in

expounding details that are not used later on, and so can be skipped: I will announce

those indulgences with a Warning in italics.

But fortunately, my morals will be in many ways straightforward, and I will only

need elementary pieces of formalism to illustrate them. There will be nothing arcane

or recherch�e here.6 (I suppose the reason these straightforward morals have apparently

5Of course, the ideas of a space of states (state-space), and general schemes for representing and

solving problems, also occur in other physical theories, quantum as well as classical. I believe similar

morals can often be drawn there. One salient example is catastrophe theory, a framework that grew out

of analytical mechanics, but is in various ways much more general; I discuss its morals in Butter�eld

(2004b).
6Many �ne books contain the pieces of formalism I cite (and vastly more!). I will mainly follow

and refer to just two readable sources: Goldstein et al. (2002), a new edition of a well-known text,

with the merit of containing signi�cant additions and corrections to previous editions; and Lanczos

(1986), an attractively meditative text emphasising conceptual aspects. Among more complete and

authoritative books, I recommend: Arnold's magisterial (1989), the beautifully careful and complete

textbooks of Desloge (1982) and Johns (2005), and Papastavridis' monumental and passionate (2002).

All these books also cover Hamiltonian mechanics and Hamilton-Jacobi theory.
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been neglected is, again, the matter-in-motion picture: i.e. the widespread belief that

the ontology of classical mechanics is unproblematic, and that every problem is in

principle solved by the deterministic laws|so why bother to look at the details of

analytical mechanics?)

To indicate the road ahead, I shall also state the morals �rst, in Section 2. Then

I illustrate them in two further Sections. In Section 3, I describe the basic ideas of

analytical mechanics, using the principle of virtual work and d'Alembert's principle to

lead up to the central equations of Lagrangian mechanics: Lagrange's equations. Then

in Section 4, I discuss variational principles, the reduction of a problem to a simpler

problem, and the role of symmetries in making such reductions: I end by proving a

simple version of Noether's theorem. Most of the morals will be illustrated, usually

more than once, in each of Sections 3 and 4.

Two more preliminary remarks: both of them about the limited scope of this paper,

and its companion covering Hamiltonian mechanics and Hamilton-Jacobi theory.

(1): Eschewing geometry:|

One main way in which my treatment will be elementary is that I will mostly eschew

the use of modern geometry to formulate mechanics. Agreed, the use of geometry

has in the last century formed a large part of the glorious development of analytical

mechanics that I began by celebrating. For example, the maestro is no doubt right

when he says `Hamiltonian mechanics cannot be understood without di�erential forms'

(Arnold, 1989: 163). But apart from a few passages, I will eschew geometry, albeit

with regret. One cannot understand everything in one go|suÆcient unto the day is

the formalism thereof!

(2): Finite systems: (Ideal):|

Another way in which my treatment will be elementary is that I will only consider

analytical mechanics' treatment of �nite-dimensional systems (often called, for short:

�nite systems). These are systems with a �nite number of degrees of freedom. That

is: they are systems whose con�guration (i.e. the positions of all component parts)

can be speci�ed by a �nite number of (real-valued) variables. So any �nite number of

point-particles is an example of a �nite system.

If one takes bodies (i.e. bulk matter) to be continua, i.e. as having matter in every

region, no matter how small, of their apparent volume, then one is taking them as

in�nite-dimensional, i.e. as having in�nitely many degrees of freedom. For there will

be at least one degree of freedom per spatial point. In that case, to treat a body as �nite-

dimensional represents a major idealization. But as we shall see, analytical mechanics

does this. Indeed, it idealizes yet more. For even if bodies were ultimately discrete,

the total number of their degrees of freedom would be enormous, though �nite. Yet

analytical mechanics typically describes bodies using a small �nite number of variables;

for example, it might describe the con�guration of a bead on a ring by just the position

of the centre of mass of the bead. So whether or not bodies are in fact continua (in�nite

systems), analytical mechanics typically makes the idealization of treating them with

a �nite, indeed small �nite, number of coordinates. These are in e�ect collective
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coordinates that aggregate information about many underlying microscopic degrees of

freedom.

This idealization|of treating in�nite or \large-�nite" systems as \small-�nite"|-

will occur often in what follows; so it will be convenient to have a label for it. I will

call it (Ideal).

But (Ideal) will not a�ect my morals; (and not just because, being an idealization

adopted by analytical mechanics itself, my morals must anyway \follow suit"). There

are two reasons. First, the very same morals could in fact be drawn from the analytical

mechanics of in�nite systems: but to do so in this paper would make it unduly long

and complicated.7

Second, (Ideal) can of course be justi�ed in various ways. It can be justi�ed em-

pirically. For like any idealization, it amounts to limiting the theory to those physical

situations where the error terms arising from the idealization are believed to be negli-

gible; (I shall be more precise about idealization in Section 2.1.4). And the countless

empirical successes of analytical mechanics using (small!) �nitely many degrees of free-

dom shows that indeed, the errors often are negligible. Besides, (Ideal) can in various

ways be justi�ed theoretically; for example, by theorems stating that for systems with

many degrees of freedom, a collective coordinate like the system's centre of mass will

evolve according to a formula involving only a small number of degrees of freedom.8

2 Morals

Recall the idea which I announced as central to all of analytical mechanics: that by

considering the set of all possible states of systems, and making appropriate mathe-

matical constructions on it, one can formulate a general scheme with various merits

for solving problems|or if not solving them, at least getting signi�cant information

about them.

With this idea in hand, I can give a general statement of my four morals. For all

four arise from this idea. They fall into two pairs, the �rst pair concerning scienti�c

method, and the second pair ontology. In each pair, one of the morals is the main one

since it is more novel (and perhaps controversial!) than the other one. For the minor

morals rebut the idea that classical mechanics is unproblematic, just matter-in-motion.

As I said in Section 1, that idea is wrong. But as I admitted, for specialist philosophers

of physics its being wrong is old news: so for them, these two rebuttals will be less

important.

7Anyway, it is pedagogically indispensable to �rst treat the case of �nitely many degrees of freedom.

It was also no doubt historically indispensable: even a genius of Lagrange's or Hamilton's stature could

not have �rst analysed the in�nite system case, treating the �nite system case as a limit.
8Such theorems are not special to analytical mechanics: in particular, what is often called `the

vectorial approach' to mechanics has such theorems. For more discussion of (Ideal), cf. Section 2.2.2's

statement of my fourth moral.
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To help keep track of the morals, I shall give each moral a label, to be used in later

Sections. The main moral about method will be labelled (Scheme); the minor one will

have two labels, (Reformulate) and (Restrict). The main moral about ontology will

be (Modality); the minor one (Accept). (So main morals get nouns, and minor ones

verbs.)

The morals are presented in the following Sections. First, the morals about method:

(Scheme): Section 2.1.4. (Sections 2.1.1 to 2.1.3 give necessary preliminaries.)

This moral is about analytical mechanics' schemes for representing problems. Section

2.1.4 will also introduce labels for four merits the Lagrangian scheme enjoys; (mer-

its also shared by the Hamiltonian and Hamilton-Jacobi schemes). Those labels are:

(Fewer), (Wider), (Reduce), (Separate).

(Reformulate) and (Restrict): Section 2.1.5. This moral is about the method-

ological value of reformulating and restricting theories.

Then the morals about ontology:|

(Modality) : Section 2.2.1. This moral is about analytical mechanics' involve-

ments in modality (necessity and possibility). I will distinguish three grades of modal

involvement, labelled (Modality;1st) through to (Modality;3rd). Lagrangian mechanics

will exhibit all three grades; (as will Hamiltonian and Hamilton-Jacobi mechanics).

(Accept): Section 2.2.2. This moral is about the subtle and various ontology of

analytical mechanics, in particular Lagrangian mechanics.

2.1 Method

My main moral about method, (Scheme), is that the provision of general schemes

for representing and solving problems is a signi�cant topic in the analysis of scienti�c

theories: not least because it falls between two topics often emphasised by philosophers,

\laws of nature" and \models". I will urge this moral by showing that Lagrangian

mechanics is devoted to providing such a scheme for mechanical problems. But I will

lead up to Section 2.1.4's description of Lagrangian mechanics' scheme, and its merits,

by :

(i): discussing some of physics' various senses of `solve a problem': an ambiguous

phrase, which repays philosophical analysis! (Section 2.1.1 and 2.1.2);

(ii): reporting some results about di�erential equations that I will need (Section

2.1.3).

Finally, Section 2.1.5 states my minor moral about scienti�c method.9

9I shall duck out of trying to prove my accusation that the philosophical literature has overlooked

a signi�cant topic, between \laws of nature" and \models'. But here is one example. Giere gives

two extended discussions of classical mechanics to illustrate his views about laws, models and related

notions like scienti�c theories and hypotheses (1988: 62-91; 1999: 106-117, 165-169, 175-180). Very

roughly, his view (partly based on ideas from cognitive science) is that science hardly needs laws, and

that theories are appropriately structured clusters of models. Maybe: but it is noteworthy that he

does not articulate the level of description provided by analytical mechanics. For him, Newton's laws

are typical examples of laws, and the harmonic oscillator, or inverse-square orbital motion, are typical

10



2.1.1 (Scheme): what is it to be \given a function"?

Throughout physics we talk about `solving a problem'. The broad meaning is clear. To

solve a problem is to state the right answer to a question.10 And similarly for related

phrases like `reducing one problem to another': to reduce one problem to a second one

is to show that the right answer to the second immediately yields the right answer to

the �rst; and so on.

But there is a spectrum of meanings of `stating a right answer', ranging from the \in-

principle" to the \useful". The spectrum arises from a point familiar in philosophy: the

ambiguity of what it is to be \given" an object (in our case, an answer to a question).

One is always given an object under a mode of presentation, as Frege put it; and the

mode of presentation may be useless, or useful, for one's purposes.

A standard example in the philosophy of mathematics (speci�cally, discussion of

Church's thesis) makes the point clear. Suppose I give you a function f on positive

integers by de�ning: f(n) := 1 8n, if Goldbach's conjecture is true; and f(n) :=

0 8n, otherwise. Have I given you an e�ectively computable function? Intuition pulls

both ways: Yes, since both the constant-1 and constant-0 functions are e�ectively

computable; No, since the mode of presentation that the de�nition used makes it

useless for your purpose of calculating a value of the function.

Similarly in physics, in particular mechanics. The solution to a problem, the right

answer to a question, is typically a function, especially a function describing how the

position of a body changes with time. And a number or function can be \given"

uselessly (one might say: perversely) as f was in the example. So the extreme in-

principle meaning for `stating the right answer' is logically weak: it tolerates any way

of giving the answer. In this sense, one may take a speci�cation of appropriate initial

conditions (and perhaps boundary conditions) for any deterministic set of equations

to \solve" any problem about the variables' values in the future. Though this in-

principle sense is cavalier about whether we could ever \get our hands on" the answer

to the problem (i.e. state it in useful form), it is important. It is connected with

signi�cant mathematics, about the existence and uniqueness of solutions to di�erential

equations, since for the initial conditions to \solve", even in this in-principle sense,

any such problem, requires that they dictate a unique solution. (Hence, the jargon: `a

well-posed problem', `the initial-value problem' etc.)

On the other hand, there are logically stronger meanings of `solution'. There is

obviously a great variety of meanings, depending on just which ways of stating the

right answer (what modes of presentation) are accepted as \useful". Broadly speaking,

models; (in fact, the closest Giere comes to articulating analytical mechanics is in a brief discussion

of axiomatic approaches: 1988: 87-89). Similarly, I submit, for the rest of the literature.
10For present purposes, `right' here can mean just `what the theory dictates' not `empirically correct'.

That is, I can set aside the threat of empirical inadequacy, whether from neglecting non-negligible

variables, or from more fundamental aws, such as those that quantum theory lays at the door of

classical mechanics. Of course, nothing I say in this paper about analytical mechanics' schemes for

solving all problems is meant to deny the quantum revolution!
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there is a spectrum, from the tolerance of \in-principle" to very stringent conceptions

of what is acceptable: for example that the function that solves a problem must be one

of an elite family of functions, e.g. an analytic function.

Here we meet the long, rich history of the notion of a mathematical function. For,

broadly speaking, physics has repeatedly (since at least 1600) come across problems in

which the function representing the solution (or more generally, representing a phys-

ical quantity of interest) does not belong to some select family of functions; and in

attempting to handle such \rogue" functions, physics has often prompted develop-

ments in mathematics. In particular, these problems in physics have been among the

main causes of the successive generalizations of the notion of function: a process which

has continued to our own time with, for example, distributions and fractals.

The general schemes provided by analytical mechanics (whether Lagrangian, Hamil-

tonian or Hamilton-Jacobi) do not secure solutions in any of these stringent senses,

except in a few cases. As we shall see, these schemes lie in the middle of the spectrum

that ranges from the tolerance of \in-principle" to the stringent senses. So neither

these stringent senses, nor the history of how physics had repeatedly to go beyond

them, is my main topic; (and each is of course a large topic on which many a book

has been written!). But I need to say a little about these senses and this history, just

because analytical mechanics' schemes are themselves examples|and historically very

signi�cant ones|of how physics' conception of solving problems has gone beyond the

stringent senses.

In other words: it will help locate these schemes, and the middle of the spectrum,

if I report some of the pressure towards the middle from the stringent extreme. So

Section 2.1.2 gives a (brutal!) summary of the history of the notion of function. Then

Section 2.1.3 reports some basic results about di�erential equations, as preparation for

Section 2.1.4's return to the schemes.

2.1.2 Generalizing the notion of function

2.1.2: Preamble Since at least the seventeenth century, the notion of a mathemati-

cal function (and allied notions like that of a curve) has been successively generalized|

and often it has been problems in physics that prompted the generalization. I shall

sketch this development, giving in Paragraphs 2.1.2.A-C three examples of how solving

problems, in particular solving di�erential equations, prompted going beyond stringent

conceptions of function. (For more details of the history, cf. Bottazini (1986), Lutzen

(2003), Kline (1972) and Youschkevitch (1976).)

Warning:| A reassurance at the outset: none of the details in these three Para-

graphs will be needed later in the paper, though the main idea of the second Paragraph,

viz. quadrature, will be important later.

Nowadays, our conception of function is utterly general: any many-one mapping

between arbitrary sets. But this represents the terminus of a long development. In the

seventeenth century, a much narrower concept had emerged, mainly from the study of
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curves and its principal o�spring, the calculus. Authors di�ered; but speaking broadly

(and in modern terms), a function was at �rst taken to be a real function (i.e. with IR as

both domain and codomain) that could be expressed by a (broadly algebraic) formula.

One main episode in the formation of this concept was Descartes' critique in his La

Geometrie (1637: especially Book II) of the ancient Greeks' classi�cation of curves;

and in particular, their disparagement of mechanical curves, i.e. curves constructed by

suitable machines. More positively, Descartes accepted (and classi�ed as `geometric')

all curves having an algebraic equation (of �nite degree) in x and y; thereby including

some curves the Greeks disparaged as `mechanical', such as the conchoid of Nicomedes

and the cissoid of Diocles (But Descartes himself, and his contemporaries, of course also

studied non-algebraic curves. For details, cf. Kline (1972: 117-119, 173-175, 311-312,

335-340) and Youschkevitch (1976: 52-53).)

But the exploration of new problems, in (what we would call!) pure mathematics

and physics, gradually generalized the concept: in particular, so as to include trigono-

metric and exponential functions, and functions represented by in�nite series|though

there was of course never an agreed usage of the word `function'. (The word `function'

seems to be due to Leibniz; as are `constant', `variable' and `parameter'.) Kline (1972:

339) reports that the most explicit seventeenth century de�nition of `function' was

Gregory's (1667): that a function is a quantity obtained from other quantities by a

succession of operations that are either

(i) one of the �ve familiar algebraic operations (addition, subtraction, multiplica-

tion, division and extraction of integral roots), or

(ii) the operation we would call taking a limit.

But Gregory's (ii) was lost sight of. The contemporary emphasis was on (i), augmented

with the trigonometric and exponential functions and functions represented by series.

Let us put this more precisely, in some modern jargon which is customary, though

not universal (e.g. Borowski and Borwein 2002). The elementary operations are: ad-

dition, subtraction, multiplication, division and extraction of integral roots, in a given

�eld. (Of course, the general notion of a �eld dates from the late nineteenth century,

together with group, ring etc.; so here we just take the �eld to be the reals.) An

algebraic function is any function that can be constructed in a �nite number of steps

from the elementary operations, and the inverses of any function already constructed;

e.g.
p
(x2 � 2). An elementary function is any function built up from the exponen-

tial and trigonometric functions and their inverses by the elementary operations, e.g.

log[tan�1
p
(exp x2) + 1]. A transcendental function is one that is not elementary.11

So by the early eighteenth century, it had emerged that the function that answers

a physical problem, in particular an inde�nite integral expressing the solution of a

di�erential equation, is often not elementary. (Though this is now a commonplace of

the pedagogy of elementary calculus, it is of course hard to prove such functions are not

11A related usage: an algebraic number is any number that is a root of a polynomial equation

with coeÆcients drawn from the given �eld, and a transcendental number is any number that is not

algebraic. But in this usage, the �eld is almost always taken to be the rationals, so that
p
2 is algebraic

(and there are only denumerably many algebraic numbers), while � and e are transcendental.
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elementary.) Accordingly, what was regarded as a solution, and as a general method of

solution, was generalized beyond the elementary functions and techniques associated

with them.

To illustrate, I will discuss (in succeeding Paragraphs) three main ways in which

such a generalization was made, namely:

(A): to include in�nite series; a topic which leads to the foundations of the calculus.

(B): to include integrals, even if these integrals could themselves only be evaluated

numerically. (Jargon: quadrature means the integration, perhaps only numerical, of a

given function).

(C): to include weak solutions; which originated in a famous dispute between

d'Alembert and Euler.

Warning: The details of (A)-(C) are not needed later on, and can be skipped. But

the main idea of (B), the idea of reducing a problem to a quadrature, will be prominent

later on.

2.1.2.A In�nite series, and the rigorization of the calculus I have already

mentioned the admission of in�nite series. That is to say: such series were not required

to be the series for an elementary function, especially since one sought series solutions

of di�erential equations.

For simplicity and brevity, I will only consider �rst-order ordinary di�erential equa-

tions, i.e. equations of the form dx
dt
= f(x; t). To �nd an in�nite series solution of such

an equation, one assumes a solution of the form

x = a0 + a1t+ a2t
2 + : : : ; _x = a1 + 2a2t+ 3a3t

2 + : : : ; (2.1)

substitutes this into the question, and equates coeÆcients of like powers of t. Though

Newton, Leibniz and their contemporaries had provided such solutions for various equa-

tions (including higher order equations), the method came to the fore from about 1750,

especially in the hands of Euler. Such series of course raise many questions about con-

vergence, and about what information might be gained by proper handling of divergent

series.

Here we meet another large and complicated story: the development of the cal-

culus, especially its rigorization in the nineteenth century by such �gures as Cauchy

and Weierstrass (Bottazini 1986: Chapters 3, 7; Boyer: 1959 Chapter 7; Kline 1972:

Chapter 40). But for present purposes, I need only note two aspects of this story.

(i): With the rigorization of analysis, a function became an arbitrary \rule" or

\mapping"; and with the late nineteenth century's set-theoretic foundation for math-

ematics, this was made precise as a kind of set, viz. a set of ordered pairs. Note the

contrast with the eighteenth century conception: for Euler and his contemporaries, a

function was �rst and foremost a formula, expressing how one \quantity" (cf. Gre-

gory's de�nition above) depended on another.

(ii): Again, physics' need for functions that were not \smooth" (in various stringent

senses) was a major motivation for this rigorization. It was also a signi�cant reason
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why, after the rigorization was accomplished, one could not go back to founding anal-

ysis solely on such smooth functions. (But even in the late nineteenth century, many

mathematicians (including great ones like Weierstrass and Poincar�e!) hankered after

such a return. Cf. Lutzen 2003: 477-484, and Paragraph 2.1.2.C below.)

Several episodes illustrate both these aspects, (i) and (ii). For example, Dirichlet's

famous example of a function that cannot be integrated occurs in a paper (1829) on

the convergence of Fourier series (a physically motivated topic). He suggests

�(x) := c for x rational ; �(x) := d for x irrational ; (2.2)

the �rst explicit statement of a function other than through one or several analytic

expressions (Bottazini (1986: 196-201), Lutzen (2003: 472), Kline (1970: 950, 966-

967). Another example is the realization (in the 1870s, but building on Liouville's

work in the 1830s) how \rarely" is the solution of a di�erential equation algebraic; (for

details, cf. Gray (2000: 49, 70f.).)

2.1.2.B Examples of quadrature Again I will, for simplicity and brevity, only

consider �rst-order ordinary di�erential equations dx
dt
= f(x; t). Here are three standard

examples of methods which reduce the integration of such an equation dx
dt
= f(x; t) to

a quadrature.

(i): The most obvious example is any autonomous equation, i.e. an equation

dx

dt
= f(x) (2.3)

whose right hand side is independent of t. Eq. 2.3 gives immediately t =
R

1
f(x)

dx;

inverting this, we obtain the solution x = x(t).

(ii): Another obvious example is the separation of variables. That is: If f(x; t) is a

product, the problem immediately reduces to a quadrature:

dx

dt
= g(x)h(t) )

Z
1

g(x)
dx =

Z
h(t) dt : (2.4)

(iii): Less obvious is the method of integrating factors, which applies to any linear

�rst-order ordinary di�erential equation, i.e. an equation of the form

dx

dt
+ p(t)x = q(t) : (2.5)

This can be integrated by multiplying each side by the integrating factor exp[
R t p(t0)dt0].

For the left hand side then becomes d
dt
(x(t): exp(

R t p)), so that multiplying the equation
by dt, integrating and rewriting the upper limit of integration as t, the solution is given

by

x(t): exp(
Z t

p) =
Z t

dt0 f exp(
Z t0

p(t00)dt00) : q(t0) g : (2.6)

These three examples, indeed all the elementary methods of solving �rst-order equa-

tions, were known by 1740. In particular, the third example (and generalizations of it
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to non-linear �rst-order equations) was given by Euler in 1734/35; (and independently

by Clairaut in 1739/40: Kline 1972: 476).

So much by way of examples of quadrature. The overall e�ect of the developments

sketched in this Paragraph and 2.1.2.A was that by the middle of the eighteenth century,

the prevalent conception of a function had become: an analytic expression formed by

the processes of algebra and calculus.

Here `processes of algebra and calculus' is deliberately vague, so as to cover the

developments I have sketched. And `analytic expression' emphasises the point above

(in (i) of Paragraph 2.1.2.A) that a function was de�ned as a formula: not (as after

the rigorization of analysis) as an arbitrary mapping, indeed a set-theoretic object.

That a function was a formula meant that it was ipso facto de�ned for all values

of its variable(s), and that identities between functions were to be valid for all such

values. These features were at the centre of a famous dispute, that led to our third

generalization of the notion of function ...

2.1.2.C Vibrating strings and weak solutions Namely, the dispute between Eu-

ler and d'Alembert over the nature of the solutions of d'Alembert's wave equation

(1747) describing the displacement f(x; t) of a vibrating string:

@2f

@t2
= a2

@2f

@x2
: (2.7)

Though this paper will be almost entirely concerned with ordinary di�erential equa-

tions, whose theory is enormously simpler than that of partial di�erential equations, it

is worth reporting this dispute. Not only did it represent the �rst signi�cant study of

partial di�erential equations. More important: Euler's viewpoint foreshadowed impor-

tant nineteenth century developments in the notions both of function, and of solution

of an equation|as we shall see. (For details of this dispute, cf. Bottazini (1986: 21-

43), Kline (1972: 503-507), Lutzen (2003: 469-474), and Youschkevitch (1976: 57-72);

Wilson (1997) is a philosophical discussion).

More precisely, the dispute was about whether eq. 2.7 could describe a plucked

string, i.e. a string whose con�guration has a `corner'. In the simplest case, this would

be a matter of an initial condition in which, with the string extending from x = 0 to

x = d:

(i) f(x; 0) consists of two straight lines, with a corner at x = c < d. That is:

f(x; 0) = kx, k a constant, for 0 � x � c and f(x; 0) = ( �kc
(d�c)

)x + kcd
(d�c)

, for c � x � d.

(ii) the string has zero initial velocity: i.e. @f

@t
jt=0 � 0.

More generally, the question was whether the wave equation can describe a waveform,

in particular an initial condition, that is (as we would now say) continuous but not

(even once) di�erentiable.

D'Alembert argued that it could not. His reasons lay in the prevalent contemporary

conception of a function just outlined. But his arguments also come close to formulating

what later became the standard requirement on a solution of a second-order equation
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such as eq. 2.7: viz. that it be twice di�erentiable in both variables.

Euler took the view that analysis should be generalised so that it could indeed

describe a plucked string: as he puts it (1748) `so that the initial shape of the string

can be set arbitrarily ... either regular and contained in a certain equation, or irregular

and mechanical'. More generally, Euler advocates allowing functions given by various

analytic expressions in various intervals; or even by arbitrary hand-drawn curves for

which, he says, the analytic expression changes from point to point. (He calls such

functions `discontinuous'.)

To be precise: according to Truesdell (1956: p. xliii, 1960: p. 247-248), Euler

proposes to mean by `function' what we now call a continuous function with piece-

wise continuous slope and curvature. Accordingly, he disregards the di�erentiability

conditions implicit in eq. 2.7 and focusses on the general solution he �nds for it, viz.

f(x� at) + f(x + at) with f an arbitrary function in his sense.

Truesdell stresses the scienti�c and philosophical importance of Euler's innovation.

Indeed, he goes so far as to say that `Euler's refutation of Leibniz's law [i.e.: Leibniz's

doctrine that natural phenomena can be described by what we now call analytic func-

tions] was the greatest advance in scienti�c methodology in the entire century' (1960:

p.248).12

That may well be so: I for one will not question either Truesdell's scholarship or

Euler's genius! In any case: several major developments thereafter|some of them

well into the nineteenth century|vindicated Euler's viewpoint that analysis, and in

particular the conception of solutions of di�erential equations, should be generalised.

To illustrate, I will sketch one such development: weak solutions of partial di�er-

ential equations. Though the idea is anticipated by Euler and contemporaries (e.g.

Lagrange in 1761: cf. Bottazzini 1986: p. 31-33), it was properly established only

in the nineteenth and twentieth centuries; partly through the investigation of shock

waves|another example of physics stimulating mathematics.13

The idea is to multiply the given partial di�erential equation L[f ] = 0 by a test

function g (roughly: a function that is suÆciently smooth and has compact support),

and then to integrate by parts (formally) so as make the derivatives fall on g. A function

f satisfying the resulting equation for all test functions g is called a `weak solution' of

the original equation. Thanks to the integration by parts, such an f will in general not

obey the standard di�erentiability conditions required of a solution of L[f ] = 0. (But

I should add that one common strategy for �nding solutions in the usual sense is to

�rst construct a weak solution and then prove that it must be a solution in the usual

12Truesdell's reading is endorsed by Bottazini (1986: 26-27) and Youschkevitch (1976: 64, fn 18,

67). But I should add that|as all these scholars of course recognize|some of Euler's work (even

after 1748) used, and sometimes even explicitly endorsed, more traditional and restrictive notions of

function.
13For a philosophical discussion of di�erent kinds of \optimism" about mathematics' ability to

describe natural phenomena (including praise of Euler's optimism), cf. Wilson (2000). St�oltzner

(2004) is a sequel to this paper, arguing that optimism can and should be combined with what Wilson

calls \opportunism".
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sense.)

To give more details in modern but heuristic terms, I will consider only a linear �rst-

order partial di�erential equation for the unknown function f of independent variables

x and t; (I follow Courant and Hilbert 1962: Chap.V.9, p. 486-490). So the equation

is, with partial derivatives indicated by subscripts:

L[f ] := A(x; t)fx +B(x; t)ft + C(x; t) = 0 : (2.8)

We de�ne the operator L� adjoint to L by the condition that gL[f ] � fL�[g] is a

divergence expression. That is, we de�ne

L�[g] := �(Ag)x� (Bg)t +Cg so that gL[f ]� fL�[g] = (gAf)x+ (gBf)t : (2.9)

For the domain R in which f is considered, we now consider functions g that have

compact support in a subregion S of R (called test functions); so that integrating eq.

2.9 over S, we obtain by Gauss' theorem

Z Z
S
(gL[f ]� fL�[g]) dx dt = 0 : (2.10)

If f is a solution of the partial di�erential equation, i.e. L[f ] = 0, then

Z Z
S

fL�[g] dx dt = 0 : (2.11)

(There is a converse, roughly as follows. If eq. 2.11 holds for f with continuous deriva-

tives, for all suitably smooth test functions g with compact support in any suitable

subregion S, then eq. 2.11 yields
R R

S gL[f ] dxdt = 0: which implies that L[f ] = 0.)

This motivates the following (admittedly, non-rigorous!) de�nition. Suppose a

function f(x; t) and its partial derivatives are piecewise continuous; (i.e. at worst, each

possesses jump discontinuities along piecewise smooth curves). Such a function f is

called a weak solution of L[f ] = 0 in R if for all suitable subregions S of R, and suitably

smooth test functions g with compact support in S

Z Z
S

fL�[g] dx dt = 0 : (2.12)

I shall not further develop the idea of a weak solution, since it will not be used in

the rest of the paper. But I note that it gives yet more examples of the theme at the

end of Section 1.1: the subtleties of determinism in classical mechanics.

(i): It was discovered (with a shock!) in the mid-nineteenth century that for a

non-linear equation, a solution that begins with smooth, even analytic, initial data can

develop discontinuities in a �nite time. And:

(ii): For weak solutions of the Euler equations for uids, determinism is strikingly

false. Sche�er (1993) and Shnirelman (1997) exhibit weak solutions on IR3 � IR with

compact support on spacetime. This means that a uid is initially at rest (t = 0) but
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later on (t = 1) starts to move with no outside stimulus, and later still (t = 2) returns

to rest: the motion being always con�ned to a ball B � IR3!14

To conclude this Subsection: in this history of generalizations of the notion of func-

tion, I have emphasised the inuence of di�erential equations. I of course admit that

other inuences were equally important, though often related to di�erential equations:

e.g. the rigorization of analysis.

But my emphasis suits this paper's purposes; and is surely \not too false" to the

history. Recall the paper's motto; and these two famous remarks by late nineteenth-

century masters. Lie said `The theory of di�erential equations is the most important

branch of modern mathematics'; and|more evidence of mathematics being stimulated

by physics|Poincar�e said `Without physics, we would not know di�erential equations'.

2.1.3 Solutions of ordinary di�erential equations; constants of the motion

I now report some basic results of the theory of ordinary di�erential equations: results

which are crucial for Lagrangian mechanics (and for Hamiltonian and Hamilton-Jacobi

mechanics). Incidentally, this Subsection will also give a glimpse of a fourth way that

functions have been generalized: viz. to include discontinuous functions, so as to

describe dynamical chaos. But this paper (and is companion) will not discuss chaos.

And here my emphasis will be on very elementary aspects of di�erential equations. I

shall report that:

(A) this theory guarantees the local existence and uniqueness of solutions, and of

constants of the motion; but

(B) for most problems, these constants only exist locally.

Both these points, (A) and (B), will be fundamental for later Sections.

2.1.3.A The local existence and uniqueness of solutions I shall follow an ex-

position of the basic theorems about solutions to systems of ordinary di�erential equa-

tions, by a maestro: Arnold (1973).

For our purposes, these theorems can be summed up in the following four propo-

sitions. Arnold calls the �rst, about �rst-order ordinary di�erential equations in Eu-

clidean space IRn, the `basic theorem'. It not only secures the local existence and

uniqueness of solutions; it also characterizes the local constants of the motion; and

it underpins the corresponding propositions about di�erential equations that are of

higher order than the �rst, or that are de�ned on di�erential manifolds rather than

IRn.

14These weak solutions are discontinuous unbounded L
2 functions. Underlying Shnirelman's ex-

ample is the physical idea (which had already been recognized) of an inverse energy cascade in two-

dimensional turbulence. Given a force f(x; t) with a small spatial scale, energy is transported via the

non-linearity of the Euler equations to the lower frequencies and longer spatial scales. In particular,

if f 's spatial scale is in�nitely small, simple dimension considerations show that it nevertheless takes

only a �nite time for the energy to reach the low-frequency range. I am very grateful to Tim Palmer

for explaining these examples to me.
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(i): The Basic Theorem (Arnold 1973: 48-49).

Consider a system of n �rst-order ordinary di�erential equations

_x = v(x) ; x 2 U (2.13)

on an open set U � IRn; equivalently, a vector �eld v on U . Let x0 be a non-singular

point of the vector �eld, i.e. v(x0) 6= 0. Then in a suÆciently small neighbourhood

V of x0, there is a coordinate system (formally, a di�eomorphism f : V ! W � IRn)

such that, writing yi : IR
n ! IR for the standard coordinates on W and e1 for the �rst

standard basic vector of IRn, eq. 2.13 goes into the very simple form

_y = e1; i:e: _y1 = 1; _y2 = : : : = _yn = 0 in W : (2.14)

(In geometric terms: f
�
(v) = e1 in W .) On account of eq. 2.14's simple form, Arnold

suggests the theorem might be called the `recti�cation theorem'. NB: For simplicity,

I have here set aside the non-autonomous case where v = v(t;x); for details of that

case, cf. ibid., p. 56.

(ii): Solutions; (ibid.: 12, 50).

Let us de�ne a solution (aka: integral curve) of eq. 2.13 to be a di�erentiable mapping

� : I ! U of the real open interval I � IR to U such that for all � 2 I

d

dt
jt=� �(t) = v(�(�)) : (2.15)

The image �(I) is called the phase curve (also sometimes, the integral curve).

Then Proposition (i) implies that there is a solution of eq. 2.13 satisfying the initial

condition �(t0) = x0. But NB: this solution need only exist locally in time: as I men-

tioned in Section 1, a solution need not globally exist even for familiar \deterministic"

theories, such as point-particles interacting by Newtonian gravity.

Proposition (i) also implies that the local solution is unique in the obvious sense that

any two solutions with the same initial condition are equal on a common sub-interval.

(iii): Constants of the motion; (ibid.: 75-78).

A di�erentiable function f : U ! IR is called a constant of the motion (aka: �rst

integral) of eq. 2.13 i� its derivative in the direction of the vector �eld v vanishes.

Equivalently: i� f is constant along every solution � : I ! U ; i� every phase curve

�(I) belongs to a unique level set f�1(fcg); c 2 IR, of f .

Typically, eq. 2.13 has no �rst integrals other than the trivial constant functions

f(U) = c 2 IR.

But it follows from the Basic Theorem that locally there are non-constant �rst in-

tegrals. That is, in the notation of (i):

(a): There is a neighbourhood V of x0 such that eq. 2.13 has n � 1 function-

ally independent �rst integrals f1; : : : ; fn�1 in V . (We say f1; : : : ; fm : U ! IR are

functionally independent in a neighbourhood of x 2 U if their gradients are linearly

independent. More precisely: if the rank of the derivative f
�
jx of the map f : U ! IRm

determined by the functions f1; : : : ; fm equals m.)
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(b): Moreover, any �rst integral of eq. 2.13 in V is a function of f1; : : : ; fn�1.

(c): Of course, in the coordinate system in which eq. 2.13 take the very simple

form eq. 2.14, the coordinates y2; : : : ; yn give us n � 1 functionally independent �rst

integrals; and the other �rst integrals are all the arbitrary di�erentiable functions of

these coordinates.

Assertions (a)-(c) give a sense in which the Basic Theorem secures the existence of

a coordinate system in which the problem of integrating eq. 2.13 is completely solved,

locally. But I stress that this does not mean it is easy to write down this coordinate

system: to write down the di�eomorphism f . In general, it is very hard to do so!

This point can hardly be over-emphasised. It will be a recurrent theme in this

paper|and I will discuss it in philosophical terms already in Section 2.1.4.

(iv): Other cases:

Corresponding de�nitions and propositions hold for:

(a) ordinary di�erential equations of higher order, principally by the standard device

of writing down an equivalent system of �rst-order equations in which new variables

represent the higher derivatives of the original variable or variables (ibid.: 59-61); and

(b) collections of such equations of varying orders (p. 62-63); and

(c) ordinary di�erential equations de�ned, not on a patch of IRn but on a di�erential

manifold (p. 249-250).

There are countless details about (iv) which I will not report; (some more details

are in Sections 3.3.2 and 4.7.3). Here I note only the following:|

In Lagrangian mechanics, the dynamics of a system with n con�gurational de-

grees of freedom is essentially described by n second-order ordinary di�erential equa-

tions; or equivalently, by 2n �rst-order equations. (In most cases, this system of equa-

tions is de�ned on a manifold, not a patch of IRn.) This system has a locally unique

solution, speci�ed by 2n arbitrary constants; (roughly, the initial positions and ve-

locities of the system's constituent particles). Besides, we de�ne a �rst integral of a

di�erential equation of arbitrary order (or of a system of them) as a �rst integral of

the equivalent system of �rst-order equations. This means that for this system, as in

(iii) above: global constants of the motion are rare; but locally, we are guaranteed that

there are 2n� 1 of them.

2.1.3.B The rarity of global constants of the motion: the circle and the

torus I said in (iii) of Paragraph 2.1.3.A that typically, eq. 2.13 has �rst integrals

other than the trivial constant functions f(U) = c 2 IR, only locally. We will later be

much concerned with the few global constants such as energy that arise in mechanics.

But it is worth giving at the outset two (related) examples of a system with no global

constants of the motion. For they are a simple and vivid illustration of the rarity of

such constants. (They are also a prototype for: (i) topics that will loom large in the

companion paper, viz. Poincar�e's theorem, and the theory of completely integrable

systems; (ii) structural stability, a central topic in catastrophe and bifurcation theory.)

One or both examples occur in many books. But again I recommend Arnold. For
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proofs of the results below, cf. his (1973: 160-167); or more briey, his (1989: 72-74).

For further results (including details about topics (i) and (ii)), cf. his (1983: 90-112;

1989: 285f.).

First example: the circle:|

The �rst example is a \toy-model" in discrete time, rather than a classical mechanical

system. Consider a circle S, and let � : S ! S be a rotation through an angle �.

(Think of S as a space of states, and � as time-evolution in discrete time.) If � is

commensurable (aka: commensurate) with 2�, i.e. � = 2�(m=n) with integers m;n

, then �n is the identity. So for any point x 2 S, the orbit of x under the repeated

action of � (the set of images of x) is closed: it eventually rejoins itself. But if � is

incommensurable with 2� (i.e. � 6= 2�(m=n) for any integers m;n), then the set of

images f� i(x) j i 2 Zg of any point x is everywhere dense in S.

Now suppose we de�ne a constant of the motion for this discrete-time dynamical

system on analogy with (iii) of Paragraph 2.1.3.A. We need only require continuity,

not di�erentiability: so we say a continuous function f : S ! IR is a constant of the

motion i� throughout each orbit f is constant. (Here `throughout' emphasises that the

de�nition is \global in time".)

(i): If � = 2�(m=n) with integers m;n in their lowest terms, there are many

constants of the motion: any continuous real-valued function f de�ned on an arc of 2�
n

radians de�nes one. But:|

(ii): If � is incommensurable with 2�, the only constants of the motion are the

trivial constant functions f(S) = fcg; c 2 IR.

It is worth expressing (ii) in terms of discontinuous functions. For that will show

how even simple systems prompt a general notion of function. (This point gets greatly

developed in the study of chaos|though as I said at the start of this Subsection, I will

not discuss chaos.) Suppose we partition S under the equivalence relation: x � y i�

x is an image of y, or vice versa, under repeated application of � . Then any function

f : S ! IR that is constant on the cells of this partition (i.e. whose level sets f�1(c)

are cells, or unions of cells) is either discontinuous at every point of S, or a trivial

constant function f(S) = fcg; c 2 IR.

Second example: the torus:|

The second example is a harmonic oscillator in two spatial dimensions, but with dif-

ferent frequencies in the two dimensions. So the equations of motion are

�xi + !2
i xi = 0 ; i = 1; 2 ; (2.16)

which have the energy in each dimension as two constants of the motion

Ei =
1

2
_x2i +

1

2
!2
i x

2
i ; (2.17)

and solutions

xi = Ai cos(!it+ �i) ; Ai =

p
(2Ei)

!i
; i = 1; 2 : (2.18)
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Each Ei de�nes an ellipse in the (xi; _xi) plane, so that a pair of values (E1; E2) de�nes

a two-dimensional torus T (i.e. a product of two ellipses).

As we shall discuss in more detail for Lagrangian mechanics:| Here, the original

system has four degrees of freedom, two for con�guration and two for velocity, i.e.

x1; x2; _x1; _x2. But the two constants of the motion have reduced the problem to only

two variables. That is: given a pair (E1; E2), the system's state|both positions and

velocities|is de�ned by a pair of variables, say x1; x2. Besides, the variables are

separated: the equations for them are independent of each other.

Furthermore, we can introduce on the surface of the torus T , angular coordinates

�1; �2 mod 2�, each winding around one of the two ellipses, in terms of which the

equations of motion become even simpler:

_�i = !i ; i = 1; 2 : (2.19)

So

�i = !it+ �i(0) ; i = 1; 2 : (2.20)

In terms of the �i (which we naturally call longitude and latitude), the motion winds

around the torus uniformly.

The qualitative nature of the motion on T depends on whether the frequencies

!1; !2 are commensurable (aka: commensurate, or rationally dependent). That is: on

whether the ratio !1
!2

is rational. More precisely: it follows readily from the results for

the discrete-time system on the circle S that:|

(i): If !1; !2 are commensurable, then every phase curve of eq. 2.19 on T is closed: it

eventually rejoins itself. We say the motion is periodic. And similarly to the discrete-

time system: any di�erentiable real-valued function de�ned on a curve  in T that

intersects every phase curve once (so that the orbit of  is the whole of T ) de�nes a

constant of the motion which is independent of the two energies.

(ii): But if !1; !2 are incommensurable, then every phase curve of eq. 2.19 on T is

everywhere dense on T : for any neighbourhood of any point on it, the curve eventually

re-enters the neighbourhood. We say the motion is quasiperiodic. Now recall that

we de�ned constants of the motion (in (iii) of Paragraph 2.1.3.A) to be di�erentiable

functions. So as in the discrete-time system on S: phase curves being everywhere dense

implies that the only constants of the motion independent of the energies are the trivial

constant functions f(T ) = fcg; c 2 IR. That is: these are the only constants for all

time. Locally, i.e. in a suÆciently small neighbourhood V of any point (�1; �2), there

are constants of the motion independent of the energies. They are given as in case

(i) by any di�erentiable real-valued function de�ned on a curve  that intersects every

phase curve in V just once; and the time-scale on which they \hold good" as constants

is set by how long it takes for some such phase curve to wind around the torus and

re-enter V .

And again, one could express these points by saying that any function that is

constant on every phase curve is either discontinuous at every point of T , or a trivial

constant function f(T ) = fcg. (For more details, cf. Arnold (ibid.) who also discusses

the analogues using higher-dimensional tori.)
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2.1.4 Schemes for solving problems|and their merits

As I announced at the end of Section 2.1.1, analytical mechanics' schemes for repre-

senting and solving problems operate in the middle of the spectrum of meanings of

`solve a problem': neither very tolerant (even of the useless), nor very intolerant (e.g.

accepting only algebraic functions). To further explain this, I must �rst distinguish

two main topics. The �rst has received philosophical attention and I will set it aside.

The second has not|and is my topic.

The �rst topic is that of approximation techniques. Mathematics and physics have

of course developed an armoury of such techniques, precisely in order to overcome the

predicament of how few problems are soluble in more stringent senses (e.g. analyt-

ically). That armoury is impressively large and powerful: and in recent years|not

before time!|philosophicers have studied it, often as part of studying scienti�c mod-

els.15

But I shall not enter into details about this topic. For my point is that analytical

mechanics' general schemes bring out another topic. Though these schemes do not (of

course!) \solve all problems" in some stringent sense, they are not simply examples of

the armoury of approximation techniques, for two (related) reasons.

First, there is a sense in which these schemes do not involve approximations|

though they do involve idealizations. Agreed, there is no established philosophical

usage distinguishing approximation and idealization. But I distinguish between them

as follows.16 Both approximation and idealization involve neglecting some quantities

believed (or hoped!) to make little di�erence to the answer to a problem. But approx-

imation does not involve simplifying, or in any way revising, the mathematical form

in which the problem is posed. Rather, one applies the approximation in the course

of solving the problem as posed. On the other hand, idealization involves neglecting

such quantities, precisely by simplifying or otherwise revising the mathematical formu-

lation of the problem; (maybe the simpli�cation occurs implicitly, when formulating a

mathematically well-de�ned problem, once given a verbal physical description). So as

I use the terms, idealization is neglecting what you believe negligible when you �rst

15The literature is of course vast, but Morgan and Morrison (1999) is a useful recent anthology. One

reason it is vast is that `model' is used in so many senses: here, Emch's distinction (2002) between

L-models (L for `logic' or `language') andH-models (H for `heuristic') is helpful. Emch and Liu (2002)

is a gold-mine of information about approximations and models (and much else) in thermodynamics

and statistical physics.
16Some authors propose similar distinctions. For example, in McMullin's excellent discussion of

Galileo (1985), `causal idealization' (264f.) is like my `approximation', and `construct idealization'

(254f.) is like my `idealization'; and more briey, Teller (1979: 348-349) makes almost exactly my

distinction. But agreed: other authors vary, sometimes using other words, such as `abstraction', e.g.

Suppe (1989: 82-83, 94-96) and Cartwright (1989: 183-198); (thanks to Anjan Chakravartty for these

two references). In any case, discussion suggests my distinction is an acceptable stipulation; though

I admit that for some colleagues, the terms have other connotations, e.g. the semantic one that any

idealization is strictly speaking false, while some approximations are true. Earman and Roberts (1999)

is a �ne discussion of the related topic of ceteris paribus clauses in laws of nature.
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pose a problem, while approximation is doing so while solving it. As we shall see, the

schemes of analytical mechanics involve, in this sense, idealizations|a major example

being (Ideal), discussed in Section 1|but not approximations.

Second and more important, these schemes give information|indeed, an amazing

amount of information|not just about solutions to individual problems, but about the

structure of the set of solutions to all problems of a large class. Of course, the nature

of this information, and of the large class, can only become clear when I expound the

scheme in question, be it Lagrangian (in this paper) or Hamiltonian or Hamilton-Jacobi

(in the companion paper). For they vary from one scheme to another. But for all three

schemes, this information is independent of approximations.

For these reasons, I think the schemes give a sense of `solve a problem', that lies in

the middle of our spectrum|and is distinctive, because not a matter of approximations.

Or rather: they give a group of senses, since the information the scheme provides varies

both with the problem and with the scheme:|

(i): Variation from one problem to another is already clear. After all, despite the

\pessimism" of Section 2.1.2's review of \rogue" functions: Happily, some problems

can be solved in one of the stringent senses, e.g. the position of a particle being given at

all times by an analytic formula. And as we shall see, the other problems are a mixed

group: the information a scheme can provide varies. For example, some problems can

be reduced to quadratures (cf. Paragraph 2.1.2.B); others cannot be.

(ii): Variation from one scheme to another. This variation will of course only be

clear once the schemes are expounded. But broadly speaking, it is fair to say that for

a given problem:

(a): The schemes agree about what kind of solution (stringent, or middle-of-the-

spectrum) it has. After all, the schemes can hardly disagree about whether the position

of a particle in a well-de�ned problem is given at all times by analytic formula|nobody

can disagree about it!

(b): But the schemes can and do di�er in the information they provide about the

given problem. And this information is not always \just theoretical": it can bear very

directly on how to solve the problem (to the extent that it can be solved). The obvious

example is the way that Jacobi's invention of transformation theory (for Hamiltonian

mechanics) enabled him to solve problems that had thitherto been intractable.

This variation across problems and schemes, points (i) and (ii), reinforces the im-

portant point that these schemes are by no means \algorithms" for solving problems.

Indeed, they are not such algorithms, even in some single middle-of-the-spectrum sense

of `solve a problem', such as reduction to quadratures. If only such \middling" solu-

tions were always possible|what a neat world it would be!

In particular, be warned:| In Section 3 onwards, one recurrent theme will be the

schemes' allowance of arbitrary variables, so that we can adopt those variables best

suited to the problem we face|i.e. yielding as stringent a solution to it as is possible.

So that allowance will be a major advantage of the schemes. But it will not mean that

the schemes tell us what are the best variables for our problem. If only!
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It would be a good project to de�ne more precisely various middle-of-the-spectrum

senses of `solution', and classify the various problems and schemes with respect to these

senses. But I shall duck out of this project, and restrict myself to laying out the kinds

of information the schemes provide. In e�ect this sort of information would be the raw

material to use for making such de�nitions and ensuing classi�cation.

We will see in Sections 3 and 4 that the Lagrangian scheme has the following four

merits|as do the other two schemes, Hamiltonian and Hamilton-Jacobi. It will be

convenient to have mnemonic labels for these merits, just as it was for the morals.

(Fewer): The use of fewer functions to describe the motion of a complicated system

that the number of degrees of freedom suggests. Indeed, in each of the three schemes an

arbitrarily complicated system is described by just one main function. (Their symbols

are respectively L;H and S: so this paper will be concerned with L, where `L' stands

for `Lagrangian'.)

(Wider): A treatment of a wider class of problems. One main way this happens (in

all three schemes) is that the scheme allows a choice of variables, to suit the problem

at hand. (If there is a symmetry, or another way to separate (de-couple) variables, the

best choice will almost always exploit it; see (Reduce) and (Separate) below.) But all

choices of a certain wide class are equally legitimate: this will give a sense in which

the general scheme's equations are covariant.17

(Reduce): The ability to reduce the number of variables in a problem. By this I do

not mean the general idea of holding some variables negligible: whether as a matter of

what I labelled approximation or of idealization. Nor do I mean the speci�c idealization

labelled (Ideal) at the end of Section 1.2: i.e. treating in�nite or \large-�nite" systems

as \small-�nite".

Rather, I mean a speci�c kind of elimination of variables from the description of a

problem, where the elimination is rigorously justi�ed by the scheme in question. Two

main sorts of example of such elimination will recur in this paper. Namely, elimination

of:

(i) Variables that describe constraints, or the forces that maintain constraints. This

will be prominent in Section 3.

(ii) Variables that describe di�erent values of a constant of the motion. Recall from

Section 2.1.3 that knowing the value c 2 IR of a constant of the motion f means we

can analyse the motion wholly within the level set f�1(fcg). As we shall see, constants
of the motion typically arise from a symmetry of the system. This will be prominent

in Section 4.4 onwards.

A simple \toy" example of all of (Fewer), (Wider) and (Reduce) is provided by

one-dimensional conservative systems: by which is meant any system described by a

17The morals arising from allowance of arbitrary coordinates turn out to be very di�erent from

those arising from general covariance in spacetime theories. This is not surprising: after all, since the

manifold we are concerned with is a state-space, not spacetime, at most one point of the manifold is

\occupied" or \realized" at any one time.
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di�erential equation, for a single real variable as a function of time x(t), of the form

�x = F (x) ; F a di�erentiable function de�ned on a real interval: (2.21)

In mechanical terms, these are systems with one con�gurational degree of freedom,

such as a point-particle moving frictionlessly in one spatial dimension.

It is easy to show that for any such system, the total energy E, the sum of the

potential and kinetic energies T and V

E := T + V :=
1

2
_x2 �

Z x

x0

F (�) d� (2.22)

is a constant of the motion. And this implies that the motion of the system can be

explicitly solved in the sense of being reduced to a single integration; (though we may

be able to do the integration only numerically: `quadrature'). For by solving eq. 2.22

for _x, the problem of integrating the second-order eq. 2.21 is reduced to integrating

_x = �pf2E � V (x)g : (2.23)

This has the solution (cf. Paragraph 2.1.2.B's �rst example of quadrature, eq. 2.3)

�
Z

dxpf2E � V (x)g =

Z
dt � t ; (2.24)

which we then invert so as to give x as a function of t.

To spell out the illustration of the three merits:| The conservation of energy re-

duces the problem from two dimensions (variables)|from needing to both know x and

_x|to one: (Reduce). A single function V describes the system: (Fewer). And our

method solves, in the sense of quadrature, an entire class of problems: (Wider).

(Separate): The ability to change to variables that are \de-coupled", in that one

has to solve, either:

(a) ideally, independent rather than coupled equations; or

(b) much more commonly, equations that are coupled less strongly (at least not

pairwise!) to one another than was the originally given set.

This merit often occurs in association with (Reduce). Reducing a problem from n

variables to n � 1 will typically leave us, after we solve the (n � 1)-variable problem,

having to �nd the nth variable, qn say, from a single equation dqn
dt

= f(q1; : : : ; qn�1)

where the right-hand side gives dqn
dt

as a function of the other variables, which are now

themselves given as functions of time. So qn can be found by quadrature.

More speci�cally, it also occurs in the method of separation of variables. Paragraph

2.1.2.B's example (ii) gave the simplest example of this method; but it will come to

the fore in Hamilton-Jacobi theory.

I submit that this is an impressive list of merits, especially since all three schemes

have all of them. In any case, it �lls out my claim that analytical mechanics is devoted

to providing general schemes for representing and solving mechanical problems.
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In Section 2.1's opening statement of my main moral about method, (Scheme), I

also claimed that the provision of such schemes is a signi�cant topic in the analysis of

scienti�c theories|not least because it falls between two topics often emphasised by

philosophers, \laws of nature" and \models".

Assessing my claim must largely rest with the reader. But I think there are two

reasons why philosophers should take note of (Scheme)|apart from the simple fact

that one science, viz. analytical mechanics, is mostly devoted to such schemes, and has

succeeded most impressively. These reasons concern how the development of schemes

for treating \any" problem, is ignored in the philosophical literature; (or so it seems

to me). I think this happens in two ways. The �rst relates to observations; the second

relates to theory, and will be taken up in the next moral.

As to observations: the literature emphasizes the \opposite" idea. That is, it

emphasizes what it takes to account for, or give a model of, given observations (or

a given phenomenon): and in particular, the nature of the approximations involved.

Indeed, one inuential vein of literature emphasizes the limitations of theory. Namely,

it stresses that one needs to choose a model that one can solve in some strong sense

(as people say: exactly, or nearly exactly), and then exploit it as much as possible to

deal with other problems. (Here `model' and `solve' have various senses, for various

examples and various authors: for example, contrast Kuhn's emphasis on exemplars

in the Postscript (1970) of his (1962), with Cartwright (1999).) I agree this happens

often, maybe \all the time", in science.18 But|my moral again|we should also note

the \opposite", i.e. schemes for treating any problem in a large class.

My second reason for noting (Scheme), relating to theory rather than observations,

is covered in my second, minor, moral about method.

2.1.5 Reformulating and Restricting a Theory: (Reformulate) and (Re-

strict)

Most of the philosophical literature conceives the development of a theory as a matter

of increasing the theory's logical strength (information content). The two main ways in

which this can happen are taken to be: deepening the theory's account of the phenom-

ena in its domain (especially by invoking a more detailed causal and/or microstructural

account); and extending the theory to new phenomena, outside its domain. Again, I

agree this happens often, and maybe \all the time". But one should also notice the

\opposite" idea: theory development without an increase in logical strength. There are

18But I think this literature also misses a point about the frequent exploitation of a single model:

namely that there are sometimes good theoretical reasons for the selection of the preferred model,

and for the success of its application to other problems. The obvious example in physics concerns

analysing problems in terms of harmonic oscillators. Not only is V / x
2 the simplest polynomial

way to specify a spatially varying force; also, Taylor's theorem implies that locally it provides the

dominant contribution to a generic smoothly spatially varying force. Of course, such considerations

are the springboard for a wealth of theory: the obvious example is the analysis of small oscillations

about equilibrium; and catastrophe theory (Butter�eld 2004b) provides a very advanced example.
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two main cases to consider. The new formulation might be equivalent (theoretically,

not just empirically) to the old; I call it (Reformulate). Or it might be logically weaker;

I call it (Restrict).

Agreed: the �rst case, (Reformulate), is old news. That is, it is not controver-

sial that providing equivalent formulations of a theory can be very signi�cant, both

methodologically and ontologically. For one of a pair of theoretically equivalent formu-

lations might extend better than the other to another domain of phenomena; or deal

better, in some sense, with the given domain. This can even be so when theoretical

equivalence is construed strongly enough that theoretical equivalence implies, or near

enough implies, that the two formulations have the same ontology.19

But analytical mechanics provides several examples of equivalent formulations, for

which this old news is worth reading; for three reasons. The �rst reason relates back

to (Scheme): one of the equivalent formulations might have the speci�c methodolog-

ical advantage of providing such a scheme. Second, as to ontology: such equivalent

formulations help rebut the false idea that classical mechanics gives us a single matter-

in-motion picture. Third, these equivalences are subtler than is suggested by textbook

impressions, and folklore slogans like `Lagrangian and Newtonian mechanics are equiv-

alent'.

The second case, (Restrict), at �rst seems paradoxical: how can one develop a

theory by restricting it, i.e. by decreasing its logical strength? My answer to this again

relates to (Scheme), but I can state it in general terms. For it reects the usual trade-

o� in scienti�c enquiry between the aims of covering (i.e. describing and explaining)

a wide domain of phenomena, and covering phenomena in detail|between width and

depth, as people say. So imagine a case where a theory admits, for just a subset of its

domain of phenomena, a formulation which o�ers, for just that subset, advantages of

\depth". In such a case, it could be best to restrict one's attention to the subset, and

pursue just the special formulation.

Analytical mechanics provides several major examples of this; we will see some as

early as Sections 3.1 and 3.2. Besides, in analytical mechanics the advantage of \depth"

o�ered by the special formulation is not a more detailed causal and/or microstructural

account, or even the possibility of adding such an account. It is rather the provision of

a general scheme for solving problems; (or adding further merits to a given scheme).

So in these examples, (Restrict) is not simply a preliminary to adding logical strength.

Furthermore, in these examples, the special formulation and the original general theory

are often logically equivalent, as regards what they say about the given subset of

phenomena. So in this way, (Restrict) and (Reformulate) will often be exempli�ed

19Here are two examples from non-relativistic quantum mechanics of a �xed number of particles:

(i) the Schr�odinger and Heisenberg pictures; (ii) the wave-mechanical and path-integral formulations

of the position representation. The members of each pair are provably equivalent; and though the

ontology of quantum mechanics is a murky business, I think no one sees a relevant di�erence between

the members of a pair. But when we turn to relativistic quantum theories, in particular quantum �eld

theory, each pair's symmetry is broken: in various ways, the Heisenberg picture and path-integral

formulation \win".
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together.

2.2 Ontology

In Section 1, I stressed that the ontology of classical mechanics is a subtler a�air than

the matter-in-motion picture suggests. This general point will be borne out in two

morals, which concern respectively: modality and objects.

2.2.1 Grades of modal involvement: (Modality)

As I said at the start of this Section, the starting-point of each of the schemes|

Lagrangian, Hamiltonian and Hamilton-Jacobi|is to postulate the state-space: the

set of all possible states of the system it is concerned with; (though the structure of

this set varies between the di�erent schemes).

At �rst sight, the philosophical import of this would seem to be at most some un-

controversial version of the idea that laws support counterfactuals. That is: whether or

not one believes in a �rm distinction between laws of nature and accidental generaliza-

tions, and whatever one's preferred account of counterfactuals, a theory (or \model")

that states `All As are Bs' surely in some sense warrants counterfactuals like `If any

object were an A, it would be a B'. And so when analytic mechanics postulates state-

space and then speci�es e.g. laws of motion on it, it seems at �rst that this just

corresponds to the passage from `All actual systems of this kind (having such-and-such

initial states|usually a \small" proper subset of state-space) evolve thus-and-so' to

`If any system of this kind were in any of its possible initial states, it would evolve

thus-and-so'.20

But this �rst impression is deceptive. The structures with which state-space is

equipped by analytical mechanics, and the constructions in which it is involved, make

for a much more varied and nuanced involvement with modality than is suggested by

just the idea that laws support counterfactuals. This is my third moral, which I call

(Modality).

I propose to delineate, in Quinean fashion, three grades of modal involvement; so

I shall write (Modality;1st) etc. Like Quine's three grades, the �rst is intuitively the

mildest grade, and the third the strongest. But this order will not correspond to

any ordering of the three schemes, Lagrangian, Hamiltonian and Hamilton-Jacobi. In

particular, this paper's scheme, the Lagrangian one, was historically the �rst, and is

in various respects the most elementary, of the three: but it exhibits the third grade of

modal involvement.

20Here, and in all that follows, I of course set aside the (apparent!) fact that the actual world is

quantum, not classical; so that I can talk about e.g. an actual system obeying Hamilton's Principle.

Since my business throughout is the philosophy of classical mechanics, it is unnecessary to encumber

my argument, from time to time, with antecedents like `If the world were not quantum': I leave you

to take them in your stride. Cf. also footnote 10 in Section 2.1.1.

30



The grades are de�ned in terms of which kind of actual matters of fact they allow

to vary counterfactually. One kind is the given initial conditions, and/or �nal and/or

boundary conditions; roughly speaking, this is the given initial state of the system.

Another kind is the given physical problem: which I here take as speci�ed by a number

of degrees of freedom, and a Lagrangian or Hamiltonian. (In elementary terms, this

means: speci�ed by the number of particles involved, and the forces between them.) A

third kind is the laws of motion, e.g. as speci�ed by Newton's or Hamilton's equations.

Thus I propose the following grades.21

(Modality;1st): The �rst i.e. mildest grade keeps �xed the given actual physical

problem and laws of motion. But it considers di�erent initial conditions, and/or �nal

and/or boundary conditions, than the actual given ones; roughly speaking, di�erent

initial states of the system. And so it also considers counterfactual histories of the

system. (Under determinism, a di�erent initial state implies a di�erent history, i.e.

trajectory in state-space.)

So this grade includes the idea above, that laws support counterfactuals. But it

will also include subtler modal involvements. Perhaps the most striking case occurs in

Hamilton-Jacobi theory. For details, cf. Butter�eld (2004d: Sec. 4, 2004e: Sec. 4) or

the companion paper. But in short: one solves a problem, as it might be an actual one,

by introducing an ensemble of systems, i.e. a set of possible systems, of which the actual

system is just one member. Furthermore, the ensemble can be chosen in such a way

that the problem is solved without performing integrations, i.e. just by di�erentiation

and elimination: a remarkable|one might well say `amazing'|technique.

(Modality;2nd): The second grade keeps �xed the laws of motion, but considers

di�erent problems than the actual one (and thereby in general, di�erent initial states).

Such cases include considering a counterfactual number of degrees of freedom, or a

counterfactual potential function. Maybe no actual system is, nor even is well modelled

as, a Lagrangian system with 5,217 coordinates; and maybe no actual system has a

potential given (in certain units) by the polynomial 13x7 + 5x3 + 42. But analytical

mechanics (in all three schemes) considers such counterfactual cases. And one can have

good reason to do so, the obvious reason being that the counterfactual case provides

an idealization or approximation needed to get understanding of an actual system.

However, this second grade also includes more ambitious cases of considering coun-

terfactual problems: namely, cases where one makes a generalization about a whole

class of problems. An elementary example is the conservation of energy theorem, which

we will see in Lagrangian mechanics.22

21I don't claim that these three grades are the best way to classify the modal involvements of

analytical mechanics. But they have the merit of being obvious, and of showing clearly the variety of

modal involvement that occurs. I also think:

(i): the grades could be sub-divided in various ways, for example using Section 3.1.1's classi�cation

of kinds of constraints (or �ner classi�cations made in the literature);

(ii): similar grades can be discerned in other physical theories.

But I shall not develop (i) or (ii) here.
22Again: an advanced, indeed spectacular, example is the classi�cation of catastrophes by catastro-
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(Modality;3rd): The third grade allows di�erent laws, even for a given problem.

Again, this can happen even in Lagrangian mechanics. Here one does not explicitly

formulate non-actual laws (much less calculate with them). Instead, one states the

actual law as a condition that compares the actual history of the system with counter-

factual histories of it that do not obey the law (in philosophers' jargon: are contralegal).

That is, the counterfactual histories share the initial (and �nal) conditions, but do not

obey the given deterministic laws of motion, with the given forces. (Agreed, for any

suÆciently smoothly varying counterfactual history, there could be forces which in

conjunction with the actual laws and initial and �nal conditions, would yield the coun-

terfactual history. But this does not matter, in the sense that it is not appealed to in

the formulation of the actual law.)

This is at �rst sight surprising, even mysterious. How can it be possible to state

the actual law by a comparison of the actual history with possible histories that do not

obey it? Besides, metaphysicians will recognize that this seems to contradict a Humean

view of laws, and in particular Lewis' doctrine of Humean supervenience (Lewis 1986,

pp.ix-x). I address this issue at length elsewhere (2004e: Section 5). For this paper,

it suÆces to note (and thereby reassure Humeans) that this third grade of modal

involvement can be reconciled with Humeanism.

To sum up this moral: the detail of analytical mechanics reveals it to have a varied

and nuanced involvement with modality.

2.2.2 Accepting Variety: (Accept)

My second moral is about ontology in a more obvious way than was (Modality): it

is about what are the basic objects of analytical mechanics. In general terms, it is

that this is a subtler and more varied a�air than suggested by the matter-in-motion

picture.23 More speci�cally, the ontology need not be \just point-particles". I shall

develop this moral in three more speci�c points.

2.2.2.A In�nite as �nite, and conversely First, analytical mechanics is much

more exible about its basic ontology than one might think|especially if one thinks of

classical mechanics as requiring au fond point-particles. In particular, each of my three

schemes can treat both �nite and in�nite systems. (By this I mean, respectively, sys-

tems with a �nite, or in�nite, number of degrees of freedom.) Furthermore, each scheme

phe theory.
23This general idea is already suggested by the moral (Reformulate) of Section 2.1.5. For given

that the world is in fact quantum, we can only interpret a phrase like `the basic objects of analytical

mechanics' as about the objects postulated by analytical mechanics. And we already know from (Re-

formulate) that di�erent approaches or theories within analytical mechanics might have heuristic, and

even ontological, di�erences (and might do so, even if they are in some sense theoretically equivalent).

So unless some single approach or theory is favoured, we already expect that analytical mechanics

might be pluralist about ontology.
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can, starting with a system given to it as �nite/in�nite, treat it as in�nite/�nite|and

under appropriate circumstances, can justify doing so.

This point returns us to (Ideal), discussed at the end of Section 1. I said there

that analytical mechanics typically describes bulk matter (bodies) in terms of a small

�nite number of variables (degrees of freedom). But this idealization can be justi�ed,

both empirically, and theoretically|by proving theorems to the e�ect that collective

variables of many-dimensional systems (i.e. systems with many, even in�nitely many,

degrees of freedom) would behave as described by a low-dimensional analysis. So here

we see analytical mechanics treating an in�nite or \large-�nite" system as \small-

�nite"|and justifying its doing so.

But the \converse" can also happen. Analytical mechanics has (on all three ap-

proaches) a rigorous formalism for describing in�nite systems (aka: continuous sys-

tems); though as mentioned in Section 1, I'll say nothing about these formalisms. But

the use of such a formalism does not commit one to the described system being re-

ally in�nite. When for example, analytical mechanics describes a string or a gas as a

continuous system (so as to describe e.g. sound waves in it), it is not committed to

the string or gas really having in�nitely many degrees of freedom. For a �nite system

can have so many degrees of freedom as to justify a model that treats it as contin-

uous. For example, one can treat the density or pressure in a gas as a continuous

function of spatial position, but take this function to represent, in an idealized way,

an average over a macroscopically small volume, of very many microscopic degrees of

freedom. And again, the justi�cation for this kind of treatment can be both empirical

and theoretical. (Continuous models of discrete phenomena are of course not special

to analytical mechanics: they are endemic in physics.)

To sum up: when analytical mechanics successfully describes a system as �nite/in�nite,

the system could really (i.e. in a classical world!) be the \opposite", i.e in�nite/�nite: a

salutary lesson in exibility, and an antidote to the matter-in-motion picture (whether

it takes matter as continuous bodies or as point-particles).

2.2.2.B Beware micro-reductionism Second, analytical mechanics is less micro-

reductionist than one might think|especially if one focusses on the matter-in-motion

picture. In particular, if a given approach to analytical mechanics is applied to a

problem or range of problems, and some objects (or quantities i.e. variables) are

de�ned from the fundamental objects etc. postulated by the approach, then we should

accept the derived objects etc. as no less real than the fundamental ones.

Here, I say `accept as no less real than the fundamental objects', rather than `accept

as real, like the fundamental objects', in order not to presuppose, nor favour, some

version of scienti�c realism|either in general or about analytical mechanics. Like

most others including anti-realists like van Fraassen, I take interpreting a physical

theory to be a matter of describing what the world would be like if it were true: an

endeavour that makes sense even if as an anti-realist, one is agnostic, or even atheistic,

about theories' assertions about unobservables.
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I admit that this point raises issues about reductionism etc. which I cannot address

here.24 SuÆce it to make two remarks in defence of the point.

(a): Since it concerns de�ned objects and quantities, it is surely plausible: why

deny reality to what is de�ned in terms of the real?

(b): This point is of course related to Paragraph 2.2.2.A above. For many if not

most examples of de�ned quantities are collective variables, typically of in�nite or

\large-�nite" systems. And as in Paragraph 2.2.2.A, there are two main cases: the

de�ned variable might be used in a \small-�nite" description of the system; or it might

be used in a continuous description (for example, taking a continuous function of spatial

position to represent a macroscopically local average of very many microscopic degrees

of freedom). So for collective variables as examples of de�ned quantities, my second

point is in e�ect an application of my �rst to the topic of reductionism.

Here is an example combining these points. Consider a circular wave spreading on a

still pond. An analytical mechanical treatment will no doubt identify a few variables,

such as the radius and height of the wave as relevant; and so describe the crest as

propagating radially, though no water molecules do (except briey). But apart from

these few variables, analytical mechanics can treat the problem in three main ways.

Either it uses just these few variables; or it takes the water to be composed of a vast

number of particles; or it takes the water to be a continuum:(Paragraph 2.2.2.A).

According to the last two ways, the few selected variables are collective variables of a

very complex system; but they are no less real than they are on the �rst treatment:

(this Paragraph).

To put these points in a slogan: we should accept that analytical mechanics suggests

a varied ontology. Hence my label, (Accept). This slogan will be sharpened in the

next Paragraph. Though it mostly concerns in�nite systems i.e. continua, while my

subsequent Sections are con�ned to �nite systems, it is worth expounding it here|not

least because it exposes a common \micro-reductionist" error.

2.2.2.C Beware the particles-in-motion picture One might reply to Paragraphs

2.2.2.A and 2.2.2.B that nevertheless point-particles are the \basic micro-ontology" of

analytical mechanics. For when analytical mechanics conceives a body or a uid as a

continuum, it thereby postulates point-sized \bits of stu�", \cheek by jowl" with one

another. Agreed, these are not point-particles in the sense of mass-points separated

from each other by a void; (the sense usually associated with Boscovitch|though in

fact the notion was introduced two decades earlier by Euler). But they are close cousins,

and deserve the name `point-particle'. For each has a de�nite position and so also its

time-derivatives (velocity, acceleration etc.), mass-density|and other properties, such

as pressure, depending on the details of the continuum being treated.

24Section 2 of Butter�eld and Isham (1999) is a brief statement of my general views. It stresses

how widespread explicit de�nability is within physics. Wilson stresses such de�nability in analytical

mechanics, and puts it to work in a critique of currently popular doctrines in the metaphysics of mind

and of properties; (1985: 230-238; 1993: 75-80).
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I reply: fair comment. I am willing to agree that point-particles, in this weak sense

including point-sized bits of matter in a continuum as well as Boscovitchean point-

particles, are the \basic micro-ontology" of analytical mechanics. Accordingly, I will

from Section 3 onwards adopt the common habit of saying `particle' to mean, according

to context, either:

(i) a point-particle (Boscovitchean or not); or following (Ideal),

(ii): a small solid (maybe rigid) body, which is assigned just one position vector r,

i.e. treated as having no internal structure or orientation.

But beware! Point-particles being the basic objects does not mean that analytical

mechanics should be, or even can be, understood in a particle-by-particle way. And

in fact, it cannot be. Here, we meet what Section 1.1 called the second error in the

idea that classical mechanics is unproblematic: what I call the `particles-in-motion

picture'. This picture claims that analytical mechanics can and should be understood

in a particle-by-particle way: i.e. that analytical mechanics not only takes matter to be

composed of point-particles (in the above weak sense), but also analyses all the physics

of matter's behaviour in terms of particle-to-particle relations.

It is this second claim that is false. Agreed, some parts of analytical mechanics

conform to it. The main example is of course the analytical mechanics of point-particles

in the stricter i.e. Boscovitchean sense, with action-at-a-distance forces. Here the main

illustration of the claim is that the total force on each particle is the sum of the forces

exerted on it by each other particle. That is, all the fundamental forces are from one

particle to another; in physics jargon, all interactions are two-body, not many-body.

The standard example is of course Newtonian gravity.25

Agreed also, some parts of the analytical mechanics of continua conform to it.

For example, the forms of the terms in the Lagrangian and Hamiltonian densities for

continua are in many cases deduced by conceiving the continua as an in�nite limit of

a large �nite assembly of point-particles. For example, one assumes that each point-

particle in the assembly interacts only with its nearest neighbours, and does so by a

quadratic potential (which might be modelled by a spring).26

25The way I have stated this illustration assumes that the component forces are just as real as the

total force on a particle. Though I fully accept this assumption, it has been denied. No matter: the

illustration could be restated in more cumbersome language so as to be independent of this controversy.
26This kind of deduction (which goes back to at least Green (1855) and Thomson (1863)) raises an

interesting methodological and historical point. Namely, if the deduced continuum model is empirically

successful, it is tempting to think the assumptions are not \merely heuristic", a ladder to be thrown

away �a la Wittgenstein, once the continuum treatment is written down. That would represent \too

great a coincidence": we should expect a body or uid, which is well modelled as a continuum with such

Lagrangian and Hamiltonian densities, to consist in fact of a vast number of point-particles of some

sort, that (to a good approximation) interact as assumed, e.g. with a nearest-neighbour quadratic

potential. In other words (with less connotation of scienti�c realism|and of our acquaintance with

quantum theory!): we should interpret analytical mechanics, when it successfully describes a body or

uid as a continuum with such densities, as idealizing in the way discussed in Paragraph 2.2.2.A|as

taking the body or uid to be a swarm of such interacting point-particles.

Indeed, this line of thought was pursued and contested in the nineteenth century debates about the

foundations of classical mechanics; but I shall not go into this. In any case, it is only in many, not in
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Nevertheless, the claim is false. In fact, the analytical mechanics of continua has to

be formulated in terms of spatially extended regions and their properties and relations.

Two examples will suÆce: one is kinematical, the other dynamical.

(i): I mentioned above that a point-sized bit of stu� in a continuum (a point-particle,

in the weaker sense) has a mass-density. At �rst sight, that seems to support the

particles-in-motion picture: that the mass of a �nite volume is the integral of the mass-

density seems to be a case, albeit a very simple one, of \micro-reductionism" or the

\supervenience of the global on the local". But in fact a rigourous formulation proceeds

in the opposite direction. It takes as primitive the attribution of masses to �nite

volumes, and de�nes mass-density as a limit of ratios of mass to volume, as the volume

tends to zero; (the details are taken over from measure theory). Besides this opposite

procedure is necessary, in order to avoid various conundrums; (unsurprisingly, these

conundrums are not really speci�c to mass|they have analogues in general measure

theory.)

(ii): One cannot understand the forces operating in continua (whether solids or

uids) as particle-to-particle. In particular, returning to Section 1.1's example of two

continuous bodies that touch, at a point or over a �nite region: it is wrong to think

each point-sized bit of matter exerts a force on some (maybe \nearby") particles, or

on all other particles. Rather, one needs to consider, for each arbitrary �nite (i.e. not

in�nitesimal) portion of matter: (a) a force exerted on its entirety by matter outside

it, and (b) a force exerted at each point of its surface by matter outside it. (Agreed,

this strategy, of describing the forces on all the countless overlapping extended sub-

regions of a continuum, is highly \redundant", in the sense that each sub-region is

described countless times, viz. as a part of the description of a larger region in which

it is included. Nevertheless, analytical mechanics adopts|and needs to adopt|this

strategy.)

To sum up: (i) and (ii) both show that in the mechanics of continua, one can-

not analyse the physics wholly in terms of particle-to-particle relations: the particles-

in-motion picture is false. Rather, one needs to take spatially extended regions as

primitives.27

all, cases that the Lagrangian or Hamiltonian densities are deduced by taking such an in�nite limit.
27My 2004a gives a more detailed critique of the particles-in-motion picture; it also connects the

picture to philosophical concerns about intrinsic properties, and Humean supervenience. My 2004

applies this critique to the philosophical debate about the nature of objects' persistence through time.

For more technical details about (i) and (ii), cf. e.g.: Truesdell (1991, Sections II.2, III.1, III.5);

and for (ii), Marsden and Hughes (1983), Section A.2 and Chapter 2. Topic (ii) has a rich history.

It was Euler who in 1775 �rst realized continuum mechanics' need for (a) and (b); but the road to

general acceptance was long and complex. For a glimpse of this history (emphasising the relation to

the principle of rigidi�cation), cf. Casey (1991: especially 333, 362-369).
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3 Analytical mechanics introduced

3.0 DiÆculties of the vectorial approach to mechanics In expounding the an-

alytical mechanics of �nite-dimensional systems, one can of course take various routes.

In this Section, my route will be based on those of Goldstein et al. (2002) and Lanczos

(1986).

First of all, I will motivate analytical mechanics by considering two diÆculties faced

by the more elementary approach to mechanics familiar from high school (mentioned

in Section 1.1). Roughly speaking, this approach takes the motion of each body to be

determined by the vector sum of all forces on it. More precisely, a body is taken to be

either:

(i) a Boscovitchean point-particle; or

(ii) (following (Ideal), the idealization discussed at the end of Section 1): a body

which is small and rigid enough to be assigned just one position vector r, i.e. to be

treated as having no internal structure or orientation; or

(iii) composed of particles in sense (i) or (ii).

I shall from now on use `particle' in this way, i.e. to mean (i) or (ii). Then according

to this approach, the motion of each particle is to be determined by the vector sum of

all forces on it. So to determine the motion of a system of particles labelled by i is in

principle to solve

mi�ri = Fi = �jFij + F
(e)
i (3.1)

where Fij is the force on particle i due to particle j, and F
(e)
i is the external force on

particle i. (Here I will wholly set aside the topic, familiar in philosophy of physics, of

the need to identify inertial frames with respect to which the quantities in eq. 3.1 are

to be measured.) This is often called the vectorial approach to mechanics.28

In general, solving eq. 3.1 is so complex as to be utterly intractable, since there

are countless particles in any macroscopic body. But the vectorial approach has two

tactics, one empirical and one theoretical, for simplifying the problem. They are both

aspects of (Ideal).

(i): It is often empirically adequate to treat the body in question as a particle (e.g.

a bob on a pendulum), or as a small set of particles; perhaps with other simpli�cations,

such as all the forces acting at the body's centre of mass.

(ii): Some problems allow an assumption about, and-or an analysis of, the many

inter-particle forces, that greatly simpli�es the problem. The simpli�cation may even

allow the problem to be solved in some \medium sense" such as quadrature. The

standard example is the rigid body: conceived as composed of particles, it is de�ned

as having constant inter-particle distances. The con�guration of the body in space can

28It is also called `Newtonian'; eq. 3.1, or `F = ma', being the most familiar form of Newton's

second law. But this name is anachronistic. In particular: (i) it was Euler in 1749 who �rst wrote

down F = m
d2r
dt2

, though in cartesian coordinates rather than vector notation (which was developed

only in the nineteenth century e.g. by Heaviside and Gibbs (Crowe 1985)); (ii) it was Boscovitch

(1758) who advocated an ontology of point-particles moving in a void.
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then be speci�ed by just six numbers.29 And other assumptions may further simplify

the problem. For example, the assumption that internal forces lie along the lines

between particles implies that internal forces do no work; which further implies that if

these forces are derived from a potential, then the internal potential energy is constant.

But these tactics are of limited value when one considers constrained systems, i.e.

systems that are required to be placed, or to move, in certain limited ways. For con-

straints lead to two diÆculties, which tactics (i) and (ii) cannot in general overcome|

and which analytical mechanics, in particular Lagrangian mechanics, does overcome.

Namely:|

(Dependent): Constraints imply that the ri are not independent: i.e. one cannot

in imagination vary each of them while leaving all the others �xed. (This implication

holds good, whether ri represents the position of a body, using (Ideal), or the position

of a point-particle.) Note that independence and dependence of the ri is a modal

notion: I shall return to this in Section 3.1.

(Unknown): In general, the forces that maintain the constraints (forces of con-

straint; aka: forces of reaction) are not known. Thus we may suppose that we know

what are often called the applied forces (aka: impressed, or given, or active, forces)

on each particle: forces like gravity, spring forces etc. that apply to the parts of the

system whether constrained or not. (So `applied' does not mean `external': the source

of an applied force can be internal to the system.) Even so, we will in general not know

the constraint forces on the system, e.g. from the surface on which it rests and across

which it is constrained to move. And so the use of eq. 3.1 is forestalled.30

Lagrangian mechanics overcomes these diÆculties; (as do Hamiltonian and Hamilton-

Jacobi mechanics). In short: for (Dependent), one eliminates variables so as to work

with a smaller set of variables which are independent. As for (Unknown): under re-

markably general conditions, one can solve problems without knowing the constraint

forces! Furthermore, after solving the problem, one can then calculate the constraint

forces: in e�ect, they have the values they need to have so as to maintain the con-

straints.

So for both diÆculties, Lagrangian mechanics will illustrate the strategy of reducing

the number of variables that describe a problem|i.e. the merit (Reduce).

Section 3.1 will describe how to overcome (Dependent). Section 3.2 will begin on

the topic of how to overcome (Unknown): it describes the principle of virtual work

and Lagrange's method of multipliers. The last Subsection, Section 3.3, introduces

29Here is an argument for the number six (which works even if the body is continuous). (1): Rigidity

implies that the positions of all the particles are �xed once we �x the position of just three of them.

For imagine: if the tips of three of your �ngers were placed at three given positions within a rigid

brick, and someone speci�ed the exact positions of the �nger-tips, then they would have implicitly

speci�ed the positions of all the brick's constituent parts. (2): the position of three particles given as

forming a certain triangle can be speci�ed by six numbers.
30This point is not a�ected by the vagueness of my distinction between applied and constraint

forces. For if one wishes, one can de�ne the applied forces as the known ones (e.g. Desloge 1982: 528),

so that it is merely usual that unknown forces maintain constraints.
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d'Alembert's principle, and from that deduces Lagrange's equations. These lie at the

centre of Lagrangian mechanics, which is further developed in Section 4.

Here I should stress a quali�cation about this order of exposition: a quali�cation

which will become clearer in Section 3.3. To get to Lagrange's equations, it is not nec-

essary to proceed as I do, via the principle of virtual work and d'Alembert's principle.

One could go \straight" from eq. 3.1 to Lagrange's equations; and some �ne exposi-

tions do. But as John Bell said, about how to teach special relativity: `the longer road

sometimes gives more familiarity with the country' (1987: 77).

We will see all four of my morals illustrated in this Section. I already mentioned

the merit (Reduce). By and large, the minor morals, (Reformulate), (Restrict) and

(Accept) will be a bit more prominent than the main ones, (Scheme) and (Modality).

But these two will come to dominate in Section 4 onwards.

3.1 Con�guration space

The key to overcoming the �rst diÆculty, (Dependent), lies in what can claim to

be Lagrangian mechanics' leading idea: con�guration space. It will be clearest to

�rst describe how this idea addresses (Dependent) (Section 3.1.1), and then turn to

describing dynamics in terms of con�guration space (Section 3.1.2).

3.1.1 Constraints and generalized coordinates

The idea is to represent the con�guration of the entire system by a point in a higher-

dimensional space. This is the basic version of the idea of state-space, which, as

discussed in Section 2, underlies all my morals and all three schemes of analytical

mechanics. Indeed, one might expect this, simply in view of determinism|which

implies that for a given system and given forces on it,\all problems" are �xed by all

initial conditions, and so by the state-space: (Modality;1st). But we can already be

more speci�c.

Namely, we can state two important advantages of the idea of state space.

(i): Such a space can be described using many di�erent coordinate systems (in

ways analysed in detail in di�erential geometry). This yields a striking generalization

of the idea of changing variables the better to solve a problem. Stated thus, the idea

is endemic to science and hardly remarkable. But allowing arbitrary coordinates on a

state-space suggests that one develop a scheme that encompasses all choices of variables,

with a view to obtaining the most tractable representation (if one is lucky: a solution,

at least in Section 2.1.1's \medium sense") of any problem: the merit (Wider).

(ii) Using a state-space allows us to relate dynamics to the geometry of higher-

dimensional spaces, in particular their curvature. (These two advantages were �rst

emphasized by Jacobi.)

Returning to the diÆculty (Dependent), the main ingredient for overcoming it is

the idea of allowing arbitrary coordinates on con�guration space, i.e. (i) above. To
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spell this out, I need to �rst state two independent distinctions between constraints. I

will also need these distinctions throughout what follows; in fact most of my discussion

will concern the �rst half of each distinction.

Holonomic constraints are expressible in the form of say k equations

fj(r1; r2; : : : ; t) = 0; where j = 1; 2; : : : k (3.2)

governing the coordinates ri. The obvious example is any rigid body: the constraints

are expressed by the equations stating the �xed inter-particle distances. (The term

\holonomic" is due to Hertz.) On the other hand, non-holonomic constraints are not

thus expressible; though they might be expressible by inequalities, or by equations

governing di�erentials of coordinates. For example:{

(i): con�nement of a particle to one side of a surface (e.g. one particle con�ned

to the region beyond a sphere of radius a centred at the origin|expressed by the

inequality j r1 j2> a2);

(ii): a rigid body rolling without slipping on a surface; the condition of rolling is a

condition on the velocities (i.e. that the point of contact is stationary), a di�erential

condition which can be given an integrated form only once the problem is solved.

Scleronomous (respectively: rheonomous) constraints are independent of (depen-

dent on) time. (The terminology is due to Boltzmann: \scleronomic" and \rheonomic"

are also used.) So the time-argument in eq. 3.2 (and in corresponding equations for

non-holonomic constraints) is to allow for rheonomous constraints.

As to overcoming the diÆculty (Dependent), the situation is clearest for holonomic

constraints. The idea is to use our free choice of coordinate systems on con�guration

space so as to describe the system by appropriate independent variables, called gener-

alized coordinates. So consider a system of N particles (i.e. point-particles or bodies

small and rigid enough to be described by a single position vector r), with k holonomic

constraints. The system's con�guration (r1; r2; : : : ; rN) is at each time con�ned to a

hypersurface in IR3N which will in general be (3N � k)-dimensional. (Rheonomous

constraints just mean that the hypersurface in question varies with time.)

More precisely: we say the k constraints eq. 3.2, fj = 0 are (functionally) indepen-

dent if at each point on the hypersurface, the 3N -dimensional gradients rfj (i.e. with
cartesian coordinates (

@fj
@x1

; : : : ;
@fj
@zN

)) are linearly independent: i.e. if at each point, the

k � 3N matrix with entries
@fj
@x1

; : : : ;
@fj
@zN

has maximal rank k.31

If the constraints are independent, then the hypersurface to which the system is

con�ned (for rheonomous constraints: at a given time) is (3N � k)-dimensional, and

there is a system of coordinates on IR3N in which the constraints become

q3N�k+1 = 0; : : : ; q3N = 0 : (3.3)

(These generalized coordinates need not have the dimension of position.) In other

words, there are 3N � k independent variables q1; : : : ; q3N�k coordinatizing the hyper-

31Cf. the de�nition of functional independence in Paragraph 2.1.3.A, (iii).
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surface, such that (again allowing for rheonomous constraints)

ri = ri(q1; : : : ; q3N�k; t); i = 1; 2; : : : ; N: (3.4)

Such coordinates are said to be adapted to the constraints. I shall usually focus

on the hypersurface, not the ambient 3N -dimensional con�guration space; and I shall

write n for 3N � k, and therefore write the generalized coordinates as q1; : : : ; qn. The

n-dimensional space is sometimes called the constraint surface in the 3N -dimensional

space; `con�guration space' is used for either of these spaces.

Con�guration space, and the way it underlies (Scheme), will be centre-stage in this

Section and Section 4.

First of all, let me address two doubts which can be raised about this strategy

of analysing the system wholly within the lower-dimensional constraint surface. (The

second is more important in what follows.)

(A): In everyday problems the constraints are often non-holonomic; as in examples

(i) and (ii) above. Here we see our �rst example of the moral (Restrict); and a main

one to boot. In fact, many of the methods and results of analytical mechanics depend

on the constraints, if any, being holonomic; and most of my discussion will assume this.

(B): Since forces of constraint are in fact �nite, a constrained system is not rigor-

ously con�ned to the constraint surface|it can depart slightly from it; (more precisely,

its con�guration can depart slightly).

There are three replies to this. The simplest and dullest is that the forces of con-

straint are often strong enough that this strategy is an empirically adequate idealiza-

tion. (Incidentally, it is an idealization in Section 2.1.4's proposed usage of neglecting

the negligible while posing, not while solving, the problem.)

A more interesting reply is that there are theorems proving that in the limit as the

forces of constraint become in�nitely strong, the system's dynamics in the full con�g-

uration space becomes as analytical mechanics describes it, on the constraint surface.

Such theorems illustrate (Ideal) and (Accept). I will report such a theorem in Para-

graph 3.3.2.A.

Finally, the most interesting reply is one of the triumphs of Lagrangian mechanics|

and a prime example of the merit (Reduce). Namely, suppose we maintain|say on

the strength of the �rst two replies|that the constraint equations hold, i.e. the sys-

tem is con�ned to the constraint surface. Then: under some very general conditions,

Lagrangian mechanics enables us to rigorously solve the mechanical problem, i.e. to

�nd the generalized coordinates q1; : : : ; qn as functions of time (at least in a \medium

sense" such as quadrature), without ever knowing the forces of constraint!32 Further-

more, after solving the problem in this way, we can come back and calculate what the

constraint forces were (as a function of time).

32To anticipate a little: it is suÆcient for this ability that the constraints are holonomic and ideal,

and the applied forces are monogenic.
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3.1.2 Kinetic energy and work

In this Subsection, I describe how to represent on con�guration space, notions which are

close cousins of the two sides of Newton's second law|the ma representing a body's

inertia and the F representing the force on it. For in analytical mechanics, these

Newtonian notions are displaced as central concepts by these cousins: respectively, the

kinetic energy, and the work done by the forces (which latter is in many cases the

derivative of a certain function, the work function, i.e. the negative of the potential

energy). Thus:{

(a): The analogue of inertia:{ The kinetic energy T := �i
1
2
miv

2
i de�nes a line-

element (in modern jargon: a metric) in the 3N -dimensional con�guration space by

(ds)2 � ds2 := 2Tdt2 = �imiv
2
i dt

2 = �imi(dx
2
i + dy2i + dz2i ) : (3.5)

Incidentally, this implies that

T =
1

2
m

 
ds

dt

!2

with m = 1 ; (3.6)

i.e. the system's kinetic energy is represented by the kinetic energy (relative to the

new line-element) of a single particle of mass 1.

(b): The analogue of force:{ To explain this, I need the idea, which will be crucial in

all that follows, of a virtual displacement. This idea also provides a main example of the

moral (Modality;1st). That is, it considers counterfactual states, but not counterfactual

problems or laws|indeed, so far laws are not in play.

A virtual displacement, Æri, of particle i is de�ned as a possible displacement of

i that is consistent with both the applied force Fa
i , and the force of constraint fi, on

particle i, at the given time. Here, it will be consistency with the constraints at the

given time that matters. We similarly de�ne a virtual displacement of the system as

possible displacements of its particles that are jointly consistent with the constraints

at the time. We will usually be concerned with arbitrarily small virtual displacements,

often called `in�nitesimal'; and I will usually omit this word.

We can express this more precisely by supposing the constraints yield di�erential

conditions on the coordinates. (Warning: This paragraph is more precise than I will

need: it is not used later on.) If the constraints are holonomic, as in eq 3.2, we can

di�erentiate to get the di�erential conditions; if the constraints are rheonomous, at

least one of the conditions will be time-dependent. So if the conditions are, in terms

of n generalized coordinates (and with k constraints),

�jAij(q1; : : : ; qn; t)dqj + Ait(q1; : : : ; qn; t)dt = 0 ; i = 1; : : : ; k; (3.7)

then a virtual displacement of the system at time t is de�ned to be any solution

(Æq1; : : : ; Æqn) of the k equations

�jAij(q1; : : : ; qn; t)Æqj = 0 ; i = 1; : : : ; k: (3.8)
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Obviously, virtual displacements need not be actual. But beware: the converse also

fails: actual displacements need not be virtual, because the forces and constraints might

vary with time (the rheonomous case), and virtual displacements must be consistent

with the forces and constraints at the given time.33 Note also that `virtual' will be

used in this sense, not just for displacements, but more generally. We distinguish

between virtual and actual variations of any quantity; and use the respective notations

(introduced by Lagrange), Æ and d, for them. Also, I shall sometimes use Æ, either

(i): for a small (not in�nitesimal) variation; or

(ii): to indicate that the di�erential is not exact.

If the total applied force on particle i has cartesian components Xi; Yi; Zi, the total

work done by this applied force in an in�nitesimal virtual displacement can be written

as a di�erential form in the cartesian coordinates, i.e. as a sum over the 3N cartesian

coordinates

Æw = �N
i=1XiÆxi + YiÆyi + ZiÆzi; (3.9)

or, transforming to generalized coordinates, say q1; : : : ; qn, as a di�erential form in the

generalized coordinates

Æw = �n
j=1FjÆqj (3.10)

where the transformation eq. 3.4 determines the Fj in terms of the cartesian compo-

nents of force Xi; Yi; Zi.

In general, Æw is not integrable. But if it is, then its integral is called the work

function U . Lanczos (1986, p. 30) calls applied forces of this kind monogenic (`mono-

genic' for `single origin') as against polygenic. Goldstein et al (2002) follow him; and I

shall also adopt these terms.34

In many of the simpler cases of monogenic forces, U is independent of both the

time, and the generalized velocities _qi, so that U = U(q1; : : : ; qn). If so, we say the

system is conservative; and we have

�jFjÆqj =
@U

@qj
Æqj (3.11)

so that by the mutual independence of the qs, we can set all but one of the Æqj equal

to 0, and so infer

Fj =
@U

@qj
: (3.12)

33So there is no real conict with the venerable principle of modal logic, that the actual is possible.

But the point is important: it underpins the derivation of the conservation of energy from D'Alembert's

principle, cf. Paragraph 3.3.1.A.
34But beware: Lanczos' text sometimes suggests `monogenic' is also de�ned for constraint forces.

Agreed, in statics at equilibrium, the total applied force is the negative of the total constraint force:

so if the former are monogenic with work function U , one can also call the latter monogenic with

\work function" �U . But in dynamics (Section 3.3), this correspondence breaks down: even with

monogenic applied forces, most constraint forces will not be derivable from a work function. Thanks

to Oliver Johns for this point.
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Writing V := �U , we have Fj = � @V
@qj

and we interpret V as a potential energy. This

corresponds to the \cartesian de�nition" of conservative systems, viz. that the force

on the ith particle Fi is derivable (8i) from a time-independent scalar function V on

con�guration space, i.e.

Fi = �riV (3.13)

where the i indicates that the gradient is to be taken with particle i's coordinates.

(Incidentally: Here we meet the prototypical case of an integrability condition. For

each i, eq. 3.13, with given Fi, has a solution V only if in the domain considered F is

curl-free, i.e. r^ F = 0: or equivalently, any closed loop integral
H
Fi � ds vanishes.)

When we add to the assumption of conservativity (i.e. V depending only on the

generalized coordinates, not on the time, nor on the generalized velocities), the as-

sumption that constraints, if any, are scleronomous, we get the conservation of energy,

i.e. the constancy in time of T + V . This can be deduced in various ways, e.g. from

d'Alembert's principle in Section 3.3 below. But however the theorem is derived, its

being a generalization over many problems means it illustrates (Modality;2nd).35

3.2 The Principle of Virtual Work

3.2.1 The principle introduced

I turn to the second diÆculty, (Unknown), faced by vectorial mechanics at the start

of this Section: that the forces that maintain the constraints (`forces of constraint',

`forces of reaction') are not known. So we ask: can we somehow formulate mechanics

in such a way that we do not need to know the forces of constraint? In fact for many

problems, we can: viz. problems in which these forces would do no work in a virtual

displacement. Such constraints are called ideal. The prototypical case is a rigid body;

where indeed the work done by the internal forces (with Fij assumed to lie along the

line between particles i and j) is zero. But this condition is quite common, even for

non-holonomic constraints; though to be sure, it also excludes very many cases e.g.

friction.

Restricting ourselves to ideal constraints (characterized, note, by a counterfactual!)

is a crucial example of the moral (Restrict). It is even more important an example

than my previous one (viz. analytical mechanics' frequent restriction to holonomic con-

straints). For most of analytical mechanics depends on this restriction. In particular,

those of its great principles that I will discuss in this paper|the principle of virtual

work, d'Alembert's principle, the principle of least action, and Hamilton's principle|

35Two remarks about the more general case where U depends on the velocities and time, so that

U = U(qj ; _qj ; t). (1) As we shall see, analytical mechanics and its variational principles apply in

this case. (2) In particular, for scleronomous systems with monogenic forces|i.e. systems with

a work-function U that has no explicit dependence on time, but may be dependent on velocities

U = U(qj ; _qj)|there is a conservation of energy theorem: T + V is conserved but with V de�ned by

V := �j
@U
@qj

_qj � U .
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do so. Accordingly, I (like many authors) will often not repeat that constraints are

being assumed to be ideal.

Besides, as envisaged at the end of Section 2.1.5, the principles are often closely re-

lated to each other, and in some cases equivalent under the assumption of ideal and/or

holonomic constraints; so that they exemplify (Reformulate) as well as (Restrict).

The �rst of the principles governing such problems is the principle of virtual work.

Again we need Section 3.1's idea of an (in�nitesimal) virtual displacement (and so

(Modality;1st)). For the principle of virtual work concerns the total work done in such

a displacement in the special case of equilibrium.

So let us assume that the system is in equilibrium. This means that for each particle

i the total force Fi on it vanishes. Then for any virtual displacement Æri, Fi � Æri = 0

and so, summing, �iFi � Æri = 0. Let us split Fi in to the applied force (impressed

force) F
(a)
i , and the force of constraint fi. And let us make our restricting assumption

that the constraints are ideal, i.e. the virtual work of the fi is 0. Then we have

�iF
(a)
i � Æri = 0: (3.14)

That is: a system is in equilibrium only if the total virtual work of all the applied

forces vanishes.

Under certain conditions the converse of this statement also holds; as follows. First

note that we cannot conclude from eq 3.14 that each F
(a)
i = 0, because the Æri are not

linearly independent vectors|recall that we are considering virtual displacements. But

it does represent a statement of orthogonality; as does the corresponding statement in

generalized coordinates (cf. the transition from eq. 3.9 to eq. 3.10)

�n
j=1FjÆqj = 0; (3.15)

which says that the \vector" of the Fj must be \orthogonal" to the surface of allowed

variations in the coordinates qj.

On the other hand, suppose the following two conditions hold.

(i): The coordinates |whether ri or qj|are indeed independent; i.e. in the case

of qj: the constraints are holonomic so that we work in their n-dimensional space, the

constraint surface; and

(ii): the displacements are reversible in the sense that if Æqj is allowed by the

constraints, so is �Æqj).
Then each Fj = 0. For only the zero vector can be orthogonal to all vectors. And so

we have the converse of the above statement. That is, we have the principle of virtual

work:

A system (subject to our restrictions) is in equilibrium if and only if for

any virtual displacement the total virtual work of all the applied forces

vanishes. (It is of course the `if' half of the principle that is substantive.)

(This is an example of what Section 2.1.5 envisaged: (Restrict) and (Reformulate)

together.)
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Note that if the applied forces are monogenic, the total virtual work of these forces

is the variation of the work-function U . So in this case equilibrium means: ÆU =

�ÆV = 0. So the topic of equilibrium with holonomic constraints leads to the topic of

a function being stationary, subject to other functions taking prescribed values. And

similarly, the topic of equilibrium with non-holonomic constraints leads to the topic

of a function being stationary, subject to conditions other than prescribed value(s) of

function(s)|conditions that might be expressed as equations relating some functions'

values or functions' di�erentials. (Here, `being stationary' means, as in elementary

calculus, having a zero derivative: details below. But again as in calculus, our interest

in stationary points of functions is often that they are extrema, i.e. maxima or minima.

And so I will often talk of `extremizing a function' etc., to avoid cumbersome phrases

like `�nd a point at which a function is stationary'|there is no word `stationarize' ! )

This is one of the several reasons for analytical mechanics' endemic use of the

method of Lagrange multipliers, to analyse extremizations of a function subject to

constraints. I �nish this Subsection with a brief introduction to this method. It will

lead us back to the topic of overcoming the diÆculty (Unknown), that we do not know

the forces of constraint.

3.2.2 Lagrange's undetermined multipliers

This method has two signi�cant advantages over the obvious method of eliminating as

many variables as there are constraint equations, and then using di�erential calculus

to perform an unconstrained extremization in fewer variables.

(i): In many cases, there is no natural choice of variables to be eliminated: either

because of the symmetrical, or nearly symmetrical, way that the variables occur; or

because any choice makes for cumbersome algebra.

(ii): The Lagrange method is more powerful. It can handle constraints given by

di�erential conditions (in mechanical terms: non-holonomic constraints); which the

elimination method cannot.

Apart from its advantages (i) and (ii), it is also worth noting that:|

(a): The method is not con�ned to the context in which it is often met, viz. varia-

tional principles (where the function to be extremized is an integral).

(b): In mechanics, the method has a physical interpretation, which provides a way

to calculate the forces that maintain the constraints; more details in Paragraph 3.2.2.B.

3.2.2.A Lagrange's method The idea is clearest in a visualizable elementary set-

ting. Suppose we want to extremize f(x; y; z) i.e. f : IR3 ! IR subject to two con-

straints g1(x; y; z) = 0 and g2(x; y; z) = 0. Generically, the constraint surfaces meet in

a line, and at the solution point (x0; y0; z0) the gradient rf must be orthogonal to the

line's tangent vector v; (otherwise f could be increased or decreased by a displacement

along the line). But v lies in the intersection of the two tangent planes of the constraint

surfaces, and these planes are normal to rg1 and rg2 respectively. So at the solution
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point (x0; y0; z0) the gradient rf must lie in the plane de�ned by rg1 and rg2, i.e. it
must be a linear combination of rg1 and rg2;

rf = �1rg1 + �2rg2: (3.16)

This argument generalizes to higher dimensions (say n), and an arbitrary number (say

m) of constraints. So using r for the n-dimensional gradient,

rf = �j�jrgj: (3.17)

We now put the argument (in higher dimensions) algebraically. We will use xi
not qi, even though the argument makes no use of cartesian coordinates; this has the

merit of indicating that the equations, eq. 3.16 and 3.17, and eq. 3.18 below, refer

to the `larger' con�guration space, i.e. whose dimension, n say, exceeds the dimension

of the constraint surface by m, where m is the number of constraints. We are to �nd

the point x0 := (x01 ; : : : ; x0n) at which Æf = 0 for small variations x0 � x0 such that

gj(x
0) := gj(x

0

1; : : : ; x
0

i; : : : ; x
0

n) = 0 for j = 1; 2; : : : ; m. So eq. 3.17 requires that there

are �j such that de�ning h(x) := f(x) + �j�jgj(x), we have:

Æh = Æf + �j�jÆgj = 0 , i.e.
@f

@xi
+ �j�j

@gj

@xi
= 0; 8i = 1; : : : ; n (3.18)

We use these n equations, together with the m equations gj(xi) = 0 to �nd the n+m

unknowns (the n xi and the m �j).

Thus the fundamental idea is to replace a constrained extremization in n variables

subject to m constraints by an unconstrained extremization in n +m variables. I will

make three brief comments, (1)-(3), about further developments, before I turn to the

physical interpretation.

(1): Thinking of the �j as variables, and so of h as a function of the n+m variables

(xi; �j) we can ask that it be stationary. This variation problem gives eq. 3.18 again, if

we vary with respect to xi; and the constraint equations gj = 0, if we vary with respect

to �j. In short: Variation of the �j gives back the constraint equations a posteriori.

(2): Lagrange's method also applies to constraints expressed not by equations gj = 0

but only by conditions on di�erentials, i.e. a set of equations

Ægj := Gj1Æx1 + : : :+GjnÆxn = 0; j = 1; 2; : : : ; m (3.19)

where the left-hand side uses the Æ to indicate that it is not an exact di�erential, i.e.

Gji is not the ith partial derivative of a function gj. Lagrange's method again applies

and we get the condition

Æf + �1Æg1 + : : :+ �mÆgm = 0; (3.20)

where we are to treat all the xi; i = 1; : : : ; n as independent variables; and into this

equation the expressions for Ægj from eq. 3.19 can be substituted. (It is just that the

left-hand side of eq. 3.19 is not the di�erential of a function gj, as it was above).

(3): Lagrange's method (including the above two comments) also applies to the

central idea of calculus of variations|the extremization of an integral, which we will

meet in Section 4; (details in Section 4.3.1).
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3.2.2.B Physical interpretation: the determination of the constraint forces

When Lagrange's multiplier method is applied to mechanics, it has a physical interpre-

tation. The interpretation is easily seen for our present topic, equilibria for monogenic

applied forces. As we have seen, for such forces, there is a V which, once added to some

linear combination of constraints, is to be extremized. In short, the physical interpre-

tation is that the Lagrange multipliers give the forces of constraint. I shall develop this

interpretation only for the special case of holonomic constraints and constraint forces

that are derivable from a potential (unusual though this is: cf. footnote 35). But the

interpretation holds much more generally.

So suppose that the constraints are holonomic (as well as ideal), so that we are

to extremize V subject to the constraints that all the gj = 0, i.e. to extremize V +

�jgj. Suppose also that each force of constraint is \monogenic", i.e. is derivable

from a potential energy. Then, two results follow. First, for each j, �jgj represents

the potential energy of the jth force of constraint. Second, the fact that each �j is

known only at the solution-point x0 reects our scanty knowledge about the forces of

constraint. For in forming the gradient of the jth additional potential energy �jgj, we

get as the contribution Fji to the i cartesian component of the force

Fji := � @

@xi
(�jgj) = ��j @gj

@xi
� @�j

@xi
gj (no summation on j); (3.21)

at the solution-point x0, gj vanishes, i.e. gj(x0) = 0, so that at x0

Fji = ��j
@gj

@xi
(no summation on j): (3.22)

Remarkably, this physical interpretation carries over to the case of non-holonomic

(but ideal!) constraints, and to the case where the ideal constraint forces do not have

a work-function, i.e. no potential energy �jgj; (as Lanczos might say, the case of

polygenic constraint forces). One proceeds as in comment (2) of Paragraph 3.2.2.A;

the forces are again given by the �-method. Furthermore, this physical interpretation

carries over to the case of non-equilibrium, i.e. dynamics, for both holonomic and

non-holonomic constraints. I will discuss this a little more in Sections 4.3.2 and 4.6;

but for more details, cf. Desloge (1982: 532-534) and Johns (2005: Chapter 3.4).

This physical interpretation underpins the striking way in which Lagrangian me-

chanics enables one to solve problems without knowing the forces of constraint. Again,

I will not go into details: not even in Section 3.3's discussion of dynamics|since there

I use ideal constraints and d'Alembert's principle to reduce mechanical problems very

directly to a description on the constraint surface which does not even mention the

constraint forces: vividly illustrating the merit (Reduce).

But in short, the idea is that, similar to just above: the ith generalized compo-

nent (i = 1; : : : ; n) of the jth constraint force (j = 1; : : : ; m) is ��j@gj=@qi. This

means that knowing the constraint equations as functions of the generalized coordi-

nates gj(q1; : : : ; qn) = 0 is enough. For as in Paragraph 3.2.2.A, there are enough
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equations to determine not just the system's motion qi(t), but also the �s, and thereby

the forces of constraint.

So to sum up: under some widespread conditions, we can, after we solve the problem

(i.e. �nd the motion of the system) without even knowing the constraint forces, go

back and calculate the constraint forces. In e�ect, the idea of this calculation is that

the constraint forces have whatever values they need to have so as to maintain the

constraints on the previously calculated motion. In this way we can overcome the

diÆculty (Unknown) in the best possible way. (For details, cf. Desloge (1982: 545-546,

549-552, 555), Johns (2005: Chapter 3-5,3-8,3-11).)

3.3 D'Alembert's Principle and Lagrange's Equations

3.3.1 From D'Alembert to Lagrange

To sum up Section 3.2: it described how the principle of virtual work eliminates the

force of constraint fi on each particle i for the case of equilibrium (thus overcoming the

diÆculty (Unknown) for that case). The idea of D'Alembert's principle is to eliminate

the fi also for non-equilibrium situations, by the simple and ingenious device of treating

the negative of the mass-acceleration, � _pi, as a force; as follows.36

Newton's second law Fi = _pi \reduces to statics" if we rearrange it as if there were

a \reversed e�ective force" � _pi; i.e. if we write

�i (Fi � _pi) � Æri = �i (F
(a)
i � _pi) � Æri + �i fi � Æri = 0: (3.23)

Again we assume that the virtual work of the forces of constraint fi is 0, so that:

�i (F
(a)
i � _pi) � Æri = 0: (3.24)

This is d'Alembert's Principle. Since the forces of constraint fi are now eliminated, I

will now drop the superscript (a) for `applied'.

This prompts three immediate comments: technical, philosophical and strategic.

(i): Given d'Alembert's Principle, we can argue, as we did after eq 3.15. Namely,

suppose that the coordinates are independent (so that constraints, if present, are holo-

nomic and we focus on the constraint surface), and that the displacements reversible.

Then each Fi � _pi = 0. This di�erence of the applied force and the inertial force,

Fi � _pi, is sometimes called the `e�ective force' on particle i; (and also sometimes the

`constraint force', despite equalling �fi!). So d'Alembert's principle eq. 3.24 implies:

the total virtual work done by the e�ective forces is zero. This is sometimes written

as: Æwe = 0, where Æwe is a non-exact di�erential; (non-exact because in general fi is

not derived from a work function).

(ii): Again, we see (Restrict) and (Modality;1st) at work.

36As usual, the history of the principle is much more complicated than modern formulations suggest.

For d'Alembert's original formulation, cf. Fraser (1985a).
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(iii): A warning about my chosen route for expounding analytical mechanics. On

this route, d'Alembert's principle �gures large (despite having so simple a deduction

from the principle of virtual work). Thus I shall report in the Paragraphs just below

how it implies a form of the conservation of energy, and a form of Lagrange's equa-

tions. It also underlies the other central principles of analytical mechanics, including

the most important one, Hamilton's Principle|which I will discuss in Section 4. Be-

sides, `underlies' here is logically strong: it means `implies when taken together with

just pure mathematical apparatus, and (for some implications) some general physical

assumptions; and in some cases, the converse implication holds'.

But I admit: many �ne expositions adopt other routes, on which d'Alembert's

principle hardly �gures. In particular, one can proceed directly from Newton's equa-

tions to Lagrange's equations. For example, cf. Woodhouse (1987: 31-34,41-47), Johns

(2005: Chapter 2-2,2-7); or in more detail, for successively less straightforward systems,

e.g. �rst for holonomic, then for non-holonomic, constraints, Desloge (1982: 522-523,

542-545, 554-557, 564-565).

As it stands, d'Alembert's principle has a signi�cant disadvantage; (so that it does

not itself supply a general scheme, on a par with the Lagrangian or Hamiltonian one).

Though the virtual work of the applied forces is often an exact di�erential (i.e. the

forces are monogenic, there is a work-function) there is no such function for the virtual

work of the inertial forces.

It is one of the key insights of Lagrangian mechanics that this disadvantage can

be overcome, by expressing d'Alembert's principle in terms of con�guration space. In

particular, by integrating d'Alembert's principle with respect to time, we can derive

Hamilton's principle itself. More precisely: by integrating the total virtual work of the

e�ective force Æwe along the system's history (trajectory in con�guration space) with

time as the integration variable, the inertial forces become monogenic: for details cf.

Section 4.2.

Besides, we can similarly derive from d'Alembert's principle other principles of La-

grangian mechanics. (In some cases, this is done via Hamilton's principle, i.e. by �rst

deriving Hamilton's principle from d'Alembert's principle.) For reasons of space, I shall

not report such derivations, though they illustrate well my moral (Reformulate). For

some details, cf. Lanczos (1986: 106-110). He discusses in order:

(a): how Gauss' principle of least constraint expresses d'Alembert's principle as a

minimum principle;

(b): the merits and demerits of Gauss' principle; and

(c): Hertz' interpretation of Gauss' principle as requiring the system's path in con-

�guration space be of minimal curvature|an idea developed by Jacobi's principle,

which I will discuss in Section 4.6.

I emphasise that these derivations and discussion are all conducted under the re-

striction we imposed at the start of Section 3.2; viz. that the constraints are ideal, i.e.

the virtual work of the forces of constraint is 0. Thus we again see (Restrict).37

37Incidentally, Lanczos raises this restriction to a postulate, called Postulate A (1986: 76).
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But I shall report: (A) how d'Alembert's principle implies the conservation of en-

ergy (under appropriate conditions); and (B) how it also implies Lagrange's equations.

These equations, set in the context of Hamilton's principle, will be centre-stage in the

next Section; so it is also worth seeing that they are implied by d'Alembert's principle

directly, i.e. not via Hamilton's principle.

Then (in the next Subsection) I will end this Section by discussing how Lagrange's

equations, regardless of how they are deduced, represent mechanical problems and

illustrate (Scheme).

3.3.1.A Conservation of energy Integrating D'Alembert's Principle, under certain

assumptions, yields as a result the conservation of energy; as follows. If the applied

forces are monogenic, then the Principle becomes

ÆV + �imi�ri � Æri = 0: (3.25)

Then: If (and only if!) the system is not only holonomic, but also scleronomous in

work-function and constraints (i.e. the work-function U can be U(qi; _qi) but U cannot

be an explicit function of t, and the constraints are gj(qi) = 0 but not gj(qi; t) = 0),

then we can choose the Æri to be the actual changes dri in an in�nitesimal time dt;

(Lanczos 1986: 92-94; cf. also footnote 33). This implies:

�imi�ri � Æri = �imi�ri � dri = dT (3.26)

so that D'Alembert's Principle gives:

dV + dT = d(T + V ) = 0: (3.27)

This result, being a generalization across a whole class of problems, illustrates my

moral (Modality;2nd).

3.3.1.B Deducing Lagrange's equations The deduction of Lagrange's equations

from d'Alembert's Principle illustrates (Reformulate) and (Restrict). In the course of

the derivation, one makes two restrictions in addition to constraints being ideal (which

is implicit in d'Alembert's principle): �rst to holonomic constraints, and then to mono-

genic systems. (Conservativity, which is used in some expositions, is not necessary.)

Warning: The details of this derivation are not used later on.

The idea will be to transform d'Alembert's principle eq. 3.24 to generalized coor-

dinates qj, of which there are say n (e.g. above we had n = 3N � k, with N particles

and k constraints). So the transformed equation will concern virtual displacements

Æqj. Then we will assume the constraints are holonomic, i.e. the qj are independent,

so that each coeÆcient of Æqj in the transformed equation must vanish.

We begin by noting that the transformation (i again labelling particles)

ri = ri(q1; q2; : : : ; qn; t) (3.28)
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yields

vi :=
dri

dt
= �j

@ri

@qj
_qj +

@ri

@t
: (3.29)

This implies \cancellation of the dots", i.e.

@vi

@ _qj
=

@ri

@qj
; (3.30)

and also commutation of di�erentiation with respect to t and qj, i.e.

d

dt

@ri

@qj
=
@vi

@qj
: (3.31)

Besides, note that

Æri = �j

@ri

@qj
Æqj (3.32)

implies

�i Fi � Æri = �j QjÆqj with Qj := �i Fi �
 
@ri

@qj

!
: (3.33)

The Qj are the components of generalized force. Though the Qj need not have the

dimensions of force (and will not if the qj do not have the dimensions of length), QjÆqj
must have the dimensions of work.

Applying these results to the second term of d'Alembert's Principle, eqn 3.24, i.e.

to

�i _pi � Æri = (�i mi _vi) �
 
�j

@ri

@qj
Æqj

!
(3.34)

and using the de�nition of total kinetic energy T := �i
1
2
miv

2
i , d'Alembert's Principle

becomes:

�j[f d
dt
(
@T

@ _qj
)� @T

@qj
g �Qj]Æqj = 0: (3.35)

Now let us assume the constraints are holonomic, so that the qj are independent. Then

we can conclude that for each j

d

dt
(
@T

@ _qj
)� @T

@qj
= Qj: (3.36)

Equations 3.36 are sometimes called Lagrange's equations. But this name is more

often reserved for the form these equations take for a system that is not just holonomic,

but also monogenic with a velocity-independent work function. That is: If each applied

force Fi (the force on the ith particle) is a gradient (with respect to i's coordinates) of

a (possibly time-dependent) scalar function V on con�guration space, i.e.

Fi = �riV (3.37)
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then the de�nition of Qj, eq. 3.33, immediately yields

Qj = �@V
@qj

(3.38)

so that de�ning the Lagrangian L := T � V , we get from eqn 3.36:

d

dt
(
@L

@ _qj
)� @L

@qj
= 0: (3.39)

(Furthermore, we can get this same form for the equations (again with L = T � V ) if

there is velocity-dependence, provided the generalized forces Qj are then obtained by

Qj = �@V
@qj

+
d

dt

 
@V

@ _qj

!
: (3.40)

This formula applies in electromagnetism; (cf. e.g. Goldstein et al (2002: 22).)

This is a good point at which to note the form of the kinetic energy T in terms of

the generalized coordinates; and in particular, the form T takes when the constraints

are scleronomous|which is the case I will mostly consider. We transform between

cartesian and generalized coordinates by equations 3.28 and 3.29. Note in particular

that

T = �i

1

2
miv

2
i = �i

1

2
mi

 
�j

@ri

@qj
_qj +

@ri

@t

!2

(3.41)

and that expanding this expression, we can express T in terms of the generalized

coordinates as

T = a + �jaj _qj + �j;kajk _qj _qk (3.42)

where a; aj; ajk are de�nite functions of the r's and t, and hence of the q's and t.

Besides, if the transformation equations 3.28 and 3.29 do not contain time explicitly

(i.e. the constraints are scleronomous), then only the last term of eq. 3.42 is non-zero:

i.e. T is a homogeneous quadratic form in the generalized velocities.

This result has a geometric signi�cance. For we saw in eq. 3.5 that T de�nes a

metric (a line-element) in the 3N -dimensional con�guration space of N particles; we

now see that for scleronomous constraints it de�nes a metric on the constraint surface.

This geometric viewpoint will be developed in Paragraph 3.3.2.E.

3.3.2 Lagrange's equations: (Accept), (Scheme) and geometry

Lagrange's equations (especially in the form of eq 3.39) are the centre-piece of La-

grangian mechanics; and since Lagrangian mechanics is the basis of other approaches

to analytical mechanics, such as Hamiltonian mechanics, these equations can fairly

claim to be the crux of the subject. I end this Section with �ve comments (in �ve

Paragraphs) about these equations.
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The �rst comment is foundational: it concerns using Lagrange's equations to jus-

tify analysing a system with holonomic constraints wholly in terms of the constraint

surface. This comment illustrates my moral (Accept). The second, third and fourth

comments are about solving Lagrange's equations, and the practical advantages of us-

ing them, i.e. my moral (Scheme). These comments lead in to the �fth comment, about

the modern geometric description of Lagrangian mechanics, and the representation it

provides of the solution of a mechanical problem.

3.3.2.A Con�nement to the constraint surface I said at the end of Section

3.1 when I �rst introduced the idea of the constraint surface, that there were theo-

rems proving that in the limit as the forces of constraint become in�nitely strong, the

system's dynamics in the full con�guration space becomes as analytical mechanics de-

scribes it, on the constraint surface. With Lagrange's equations eq. 3.39 in hand, we

can state such a theorem (cf. Arnold 1989: 75-77).

Suppose again we are given N particles, and so a 3N -dimensional con�guration

space M , which we equip with the line-element eq 3.5. Let S be an n-dimensional

hypersurface of M ; (so we imagine there are k := N �n holonomic constraints); let q1
be n coordinates on S and let q2 be k coordinates in directions orthogonal to S. Let

the potential energy have the form V = V0(q1;q2) + Cq22. The idea is that we will let

C tend to in�nity, to represent a stronger and stronger force constraining the system

to stay on S. So consider the motion in M according to eq 3.39 (with 3N coordinates)

of a system with initial conditions at t = 0

q1(0) = q01 _q1(0) = _q01 q2(0) = _q2(0) = 0 (3.43)

Then as C !1, a motion on S is de�ned with the Lagrangian

L
�
= T jq1=q2=0 �V0 jq2=0 : (3.44)

This result illustrates (Accept) and (Ideal). This conception of a constrained system

as a limit also plays a role in the equivalence of some analytical mechanical principles;

cf. Section 4.2 and Arnold (1989: 91f.).

3.3.2.B Integrating Lagrange's equations I begin with three general comments

about solving Lagrange's equations, in the usual form, eq 3.39.

(1): Di�erential equations on a manifold: velocity phase space:|

The �rst point to stress is that the n second-order di�erential equations eq. 3.39 are

(despite the appearance of the partial di�erentials!) ordinary di�erential equations;

equations which are de�ned on a di�erential manifold, the constraint surface.

In Paragraph 2.1.3.A's brief review of the theory of ordinary di�erential equations, I

mentioned that the basic theorem about the local existence and uniqueness of solutions

of (and local constants of the motion for) �rst-order ordinary di�erential equations car-

ried over to higher-order equations de�ned on a di�erential manifold. And Paragraph
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3.3.2.E will give more details about the description of Lagrangian mechanics in terms

of modern geometry, i.e. manifolds. But there are two important points to make about

this, which do not require any modern geometry.

(i): It is worth introducing jargon for the 2n-dimensional space coordinatized by

the qs and _qs taken together (n is the number of con�gurational degrees of freedom).

After all, the crucial function, the Lagrangian L(q; _q) is de�ned on this space. It is

called velocity phase space. (Sometimes, it is called `phase space'; but this last term is

more often used for the momentum phase space of Hamiltonian mechanics.) It is often

denoted by TQ: here T stands for `tangent', not `time', for reasons given in Paragraph

3.3.2.E.

Incidentally: In writing L(q; _q) and saying L is de�ned on TQ, I have simpli�ed

by setting aside time-dependent potentials and rheonomous constraints. For treating

them, there is again useful jargon. If Q is a con�guration space given independently of

time, then the space Q�IR, with points (q; t), t 2 IR representing a time, is often called

the extended con�guration space. And the treatment of time-dependent potentials and-

or rheonomous constraints might then proceed in what can be called extended velocity

phase space TQ� IR.

(ii): As regards integrating Lagrange's equations:| Recall the idea from ele-

mentary calculus that n second-order ordinary di�erential equations have a (locally)

unique solution, once we are given 2n arbitrary constants. This idea holds good for

Lagrange's equations, even in the \fancy setting" of a manifold TQ or TQ� IR. And

the 2n arbitrary constants can be given just as one would expect: as the initial con-

�guration and generalized velocities qj(t0); _qj(t0) at time t0. Comments (2) and (3)

expand a little on this.

(2): The Hessian condition:|

Expanding the time derivatives in eq. 3.39 gives

@2L

@ _qk@ _qj
�qk = � @2L

@qk@ _qj
_qk �

@2L

@t@ _qj
+
@L

@ _qj
: (3.45)

So the condition for being able to solve these equations to �nd the generalized accel-

erations at some initial time t0, �qj(t0), in terms of qj(t0); _qj(t0) is that the Hessian

matrix @2L
@ _qj@ _qk

be nonsingular. Writing the determinant as j j, and partial derivatives

as subscripts, the condition is that:

j @2L

@ _qj@ _qk
j � j L _qj _qk j 6= 0 ; (3.46)

This Hessian condition holds in very many mechanical problems; and henceforth, we

impose it. Indeed it underpins most of what follows: it will also be the condition

needed to de�ne the Legendre transformation, by which we will pass from Lagrangian

to Hamiltonian mechanics.

But I should also stress that the Hessian condition can fail, and does fail in im-

portant problems. The point has been recognized since the time of Lagrange and
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Hamilton; though it was only in the mid-twentieth century, that Dirac, Bergmann and

others developed a general framework for mechanics that avoided the Hessian condi-

tion. I shall make just three remarks about this: one mathematical, one physical and

one terminological.

(i): It is easy to show that the Hessian condition implies that L cannot be ho-

mogeneous of the �rst degree in the _qi. That is, L cannot obey, for all � 2 IR:

L(qi; � _qi; t) = �L(qi; _qi; t). It is also easy to show that homogeneity of the �rst degree

in the _qi for positive � is equivalent to an integral of L (viz., the integral that is cen-

tral to the calculus of variations: cf. Section 4.2) being independent of the choice of

its integration variable (called being `parameter-independent'). (For details, cf. e.g.

Lovelock and Rund (1975: Section 6.1).)

(ii): Some problems are naturally analysed using an L that is homogeneous in this

sense, and so has a parameter-independent integral.

Perhaps the best-known case occurs in Fermat's principle in geometric optics. It

says, roughly speaking, that a light ray between spatial points P1 and P2 travels by the

path that minimizes the time taken. If one expresses this principle as minimizing an

integral with time as the integration variable, one is led to an integrand that is in gen-

eral, e.g. for isotropic media, homogeneous of degree 1 in the velocities _qi|conicting

with the Hessian condition eq. 3.46. So geometric optics usually proceeds by taking a

spatial coordinate as the integration variable, i.e. the parameter along the light path.

For details and references, cf. e.g. (Butter�eld 2004c: Sections 5,7).

But also in mechanics as against optics, there are cases of homogeneous L and

parameter-independence. This is especially true in relativistic theories|beyond this

paper's scope! (Cf. Johns (2005: Part II) for a beautifully thorough account.)

(iii): Beware of jargon. The framework of Dirac et al. is called `constrained

dynamics"|so be warned that this is a very di�erent sense of `constraint' than ours.

Of course, even with eq. 3.46, it is still usually hard in practice to solve for the

�qj(t0): they are buried in the left hand side of eq. 3.45. This circumstance prompts

the move to Hamiltonian mechanics, taken up in the companion paper. Meanwhile,

the topic of the practical diÆculty of solving equations prompts (3).

(3): The ineluctable:|

I admit that from a very general viewpoint, Lagrange's equations represent no advance

over the vectorial approach to mechanics. Namely: the dynamical problem of n degrees

of freedom is still expressed by n second-order di�erential equations. Broadly speaking,

this \size" of the dynamical problem is an ineluctable consequence of Newton's second

law being second-order in time. By and large, the most that a general scheme can hope

to do to reduce this \size" is:

(i) to provide help in �nding and-or using new variables that simplify the prob-

lem; especially by reducing the number of equations to be solved, by some of the new

variables dropping out (cf. (Reduce) and (Separate));

(ii) to make a useful trade-in of second-order equations for �rst-order equations.

As we shall see, Lagrangian mechanics does (i). (Hamiltonian mechanics does

both (i) and (ii).)
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So much by way of general remarks about integrating Lagrange's equations. I now

turn to the practical advantages of using them to solve problems. We can already

see two substantial advantages|advantages that are valid for all holonomic systems

(eq. 3.36), not just those holonomic systems which are monogenic with a velocity-

independent work function (eq. 3.39).

3.3.2.C Covariance; (Wider) The above deduction of Lagrange's equations, eq.

3.36 and 3.39, makes it clear that they are covariant under any coordinate transfor-

mations (aka: point-transformations) qj ! q0j. (Of course, one can also prove this

covariance directly i.e. assume the equations hold for the qj, and assume some trans-

formation qj ! q0j, and then prove they also hold for the q0j.) This covariance means

we can analyse a problem in whichever generalized coordinates we �nd convenient:

whichever coordinates we choose, we just write down the Lagrangian in those coordi-

nates and then solve Lagrange's equations in the form eq. 3.36 or eq. 3.39. This is

one of our main illustrations of (Scheme), and its merit (Wider). (We will later see

this covariance as an automatic consequence of a variational principle; cf. the end of

Section 4.2.)

3.3.2.D One function; (Fewer) In any such generalized coordinates, and for any

number of particles (or generalized coordinates), the solution of the problem is encoded

in a smaller number of functions than the number of degrees of freedom immediately

suggests. In eq. 3.36, the inertia is encoded in one function T (cf. (a) in Section

3.1.2). And more remarkably, eq. 3.39 encodes the forces in one function V ; besides,

it encodes the solution to the problem in just one function, viz. L := T � V . This

illustrates merit (Fewer) of (Scheme). This situation prompts a technical comment,

and some philosophical remarks.

(1): Equivalent Lagrangians:| The technical comment is that my phrase `one func-

tion' needs clarifying. To explain this, let us consider just holonomic conservative

systems, described by eq. 3.39. It is easy to show that two Lagrangians L1 and L2

determine the very same equations eq. 3.39 if they di�er by the time derivative of a

function G(qj(t)) of the generalized coordinates, i.e. if L1(q; _q)�L2(q; _q) =
d
dt
G(q(t)).

Such Lagrangians are called equivalent.

The converse is false: two inequivalent Lagrangians can yield the same equations of

motion. A two-dimensional harmonic oscillator gives an example. We met this system

in Paragraph 2.1.3.B, with di�erent frequencies in the two dimensions. Now we need

only the special case of a common frequency. So the usual Lagrangian and its Lagrange

equations are (with cartesian coordinates written as qs):

L1 =
1

2

h
_q21 + _q22 � !2(q21 + q22)

i
; �qi + !2qi = 0 ; i = 1; 2: (3.47)

But the same Lagrange equations, i.e. the same dynamics, is given by

L2 = _q1 _q2 � !2q1q2 ; (3.48)
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which is not equivalent to L1. This example is given by Jos�e and Saletan (1998: 68,

103, 145), together with a proof that the converse results holds locally.38

(2): How the Lagrangian controls the motion:|

Turning to philosophy: it is at �rst sight puzzling that the motion in 3-dimensional

space of an arbitrary number of particles can be controlled by fewer functions than

there are degrees of freedom: how so?

Part of the answer is of course that the functions are de�ned not on physical space.

In particular, V is de�ned on con�guration space Q (or for a time-dependent po-

tential on extended con�guration space Q � IR). And L and T are de�ned on the

2n-dimensional velocity phase space TQ with points (q; _q) (or again: on the extended

velocity phase space TQ � IR). So these functions encode properties of the entire

system's con�guration, or of the con�guration taken together with the n generalized

velocities. And there is no diÆculty in general about how a single function on a higher-

dimensional space might determine a motion in the space. After all, one could take

the function's (higher-dimensional) gradient.

But this is of course not how these functions determine the motion; (though inci-

dentally, it is in e�ect how another function, the Hamiltonian, determines the motion

in Hamiltonian mechanics). So the question arises how they do so, i.e. whether there

is some notion|perhaps a geometric one, like taking the gradient|that underlies how

these functions determine the motion, via eq.s 3.36 and 3.39.

The short answer is that there is such a notion: these equations reect the fact

that the dynamical laws (the determination of the motion) can be given a variational

formulation. In particular, for holonomic conservative systems (cf. eq. 3.39): it turns

out that when we consider L's values not just at various times for the actual motion,

but also for suitably similar possible motions, then the collection of all these values

encodes the physical information that determines the motion.

But this short answer immediately invites two further questions, one philosophical

and one technical. The philosophical question is: `how can it be that possible values of

a function such as L determine actual motions?' As I mentioned at the end of Section

2.2.1, I address this issue at length elsewhere (2004e: Section 5) and will not pursue it

here. The technical question is (again, stated just for holonomic conservative systems):

`how do L's values for some merely possible motions determine the actual motion?' I

will answer that in detail in Section 4; (and Hamiltonian mechanics gives a deeper

perspective on the answer).

3.3.2.E Geometric formulation I turn to give a brief description of the elements

of Lagrangian mechanics in terms of modern di�erential geometry. (Warning: This

Paragraph is not used later on.) Here `elements' indicates that:

(i): As this paper mostly eschews modern geometry, I will here assume without

explanation various geometric notions, in particular: manifold, vector, one-form, met-

38Thanks to Harvey Brown for alerting me to this example and Jos�e and Saletan's discussion; and

to two other uses of this example in connection Noether's theorem (Section 4.7.5).
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ric, Lie derivative and tangent bundle. (But a reassurance: Section 4.7.3 gives some

explanations of manifold, vector �eld and tangent bundle, which apply equally here.)

(ii): I make the simplifying assumptions that led to the usual form of Lagrange's

equations eq. 3.39: in particular, that the constraints are holonomic, scleronomous and

ideal, and that the system is monogenic with a velocity-independent work-function.

But much of the description below can be generalized in various ways to avoid these

assumptions.

(iii): I will also simplify by speaking \globally, not locally". For example, I will

speak as if the relevant scalar functions, and vector �elds and their integral curves, are

de�ned on a whole manifold; when in fact all that Lagrangian mechanics can claim in

application to most systems is a corresponding local statement|as we already know

from Paragraph 2.1.3.A's report that di�erential equations are guaranteed the existence

and uniqueness only of a local solution.

Finally, a warning:| Hitherto I have written qj; qk etc. for the generalized coordi-

nates. But in this Paragraph, I need to respect the distinction between contravariant

and covariant indices (in more modern jargon: vectors and forms). So I write the

coordinates as qi; qj etc. Similarly, I will in this Paragraph, though not elsewhere in

the paper, adopt the convention that repeated indices are summed over.

We begin by assuming that the con�guration space (i.e. the constraint surface) is

a manifold Q. So the kinetic energy T , being a homogeneous quadratic form in the

generalized velocities (cf. discussion of eq. 3.42), de�nes a metric on Q.

The physical state of the system, taken as a pair of con�guration and generalized

velocities, is represented by a point in the tangent bundle TQ. That is, writing Tx
for the tangent space at x 2 Q, TQ has points (x; �); x 2 Q; � 2 Tx; so TQ is a 2n-

dimensional manifold. As I said in Paragraph 3.3.2.B, TQ is sometimes called velocity

phase space. We will of course work with the natural coordinate systems on TQ induced

by coordinate systems q on Q; i.e. with the 2n coordinates (q; _q) � (qi; _qi).

The fundamental idea is now that this tangent bundle is the arena for the geometric

description of Lagrangian mechanics: in particular, the Lagrangian is a scalar function

L : TQ! IR which \determines everything". But I must admit at the outset that this

involves limiting our discussion to Lagrangians, and coordinate transformations, that

are time-independent.

More precisely: recall, �rst, the simplifying assumptions in (ii) above. Velocity-

dependent potentials and-or rheonomous constraints would prompt one to use the

extended con�guration space Q�IR, and-or the extended velocity phase space TQ�IR.

So would time-dependent coordinate transformations.39 I admit that this last is a

considerable limitation from a philosophical viewpoint, since it excludes boosts, i.e.

transformations to a coordinate system moving at constant velocity with respect to

another; and boosts are central to the philosophical discussion of spacetime symmetry

groups, and especially of relativity principles. To give the simplest example: the

Lagrangian of a free particle in one spatial dimension is just its kinetic energy, i.e.

39Thanks to Harvey Brown for urging this last limitation.
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in cartesian coordinates 1
2
m _x2. Under a boost with velocity v in the x-direction to

another cartesian coordinate system, x 7! x0 := x � vt; i.e. the point labelled x in

the �rst system is labelled by x � vt in the second system (assuming the two spatial

coordinate systems coincide when t = 0). For example, if v = 5 metres per second,

the point �rst labelled x = 10 metres is labelled by the second system at time t = 2

seconds as 10� 5:2 = 0, i.e. as the origin. So _x0 = _x� v, and the Lagrangian, i.e. the

kinetic energy, is not invariant under the boost: by choosing v equal to the velocity

of the particle in the x-direction, one can even make the particle have zero energy. (I

shall return to the topic of transformations under which the Lagrangian is invariant,

though again with my limitation to TQ, when presenting Noether's theorem; Section

4.7, cf. especially Section 4.7.3).

But setting aside these caveats, I now describe Lagrangian mechanics on TQ, with

four comments.

(1): 2n �rst order equations; the Hessian again:|

The Lagrangian equations of motion (in the natural coordinates (q; _q)) are now 2n

�rst-order equations for the functions qi(t); _qi(t), determined by the scalar function

L : TQ! IR. The 2n equations fall in to two groups: namely

(a) the n equations eq. 3.45, with the �qi taken as the time derivatives of _qi with

respect to t; i.e. we envisage using the Hessian condition eq. 3.46 to solve eq. 3.45 for

the �qi, hard though this usually is to do in practice;

(b) the n equations _qi = dqi

dt
.

(2): Vector �elds and solutions:|

(a): These 2n �rst-order equations are equivalent to a vector �eld on TQ. This

vector �eld is called the `dynamical vector �eld', or for short the `dynamics'. I write

it as D (to distinguish it from the generic vector �eld X; Y; :::). So the solutions are

integral curves of D.

(b): In the natural coordinates (qi; _qi), the vector �eld D is expressed as

D = _qi
@

@qi
+ �qi

@

@ _qi
; (3.49)

and the rate of change of any dynamical variable f , taken as a scalar function on TQ,

f(q; _q) 2 IR is given by
df

dt
= _qi

@f

@qi
+ �qi

@f

@ _qi
= D(f): (3.50)

(c): Again, the fundamental idea of the Lagrangian framework is that the La-

grangian L \determines everything". In particular, it determines: the dynamical vector

�eld D, and so (for given initial q; _q) a solution, a trajectory in TQ, 2n functions of

time q(t); _q(t) (with the �rst n functions determining the latter).

(d): The (local) existence and uniqueness of solutions to sets of �rst-order equa-

tions means not just that initial conditions qi(t0); _q
i(t0) determine a unique solution;

but this solution is now a curve (parametrized by time) in TQ. This separation of solu-

tions/trajectories within TQ is important for the visual and qualitative understanding

of solutions.
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(3): Geometric formulation of Lagrange's equations:|

We can formulate Lagrange's equations in a coordinate-independent way, by using

three ingredients. Namely: L itself (a scalar, so coordinate-independent); the vector

�eld D that L de�nes; and the one-form on TQ de�ned by L (locally, and in terms of

the natural coordinates (qi; _qi)) by

�L :=
@L

@ _qi
dqi : (3.51)

(This one-form takes a central role in Hamiltonian mechanics, where it is called the

canonical one-form.)

The Lie derivative of �L along the vector �eld D on TQ de�ned by L is, by the

Leibniz rule:

LD�L = (LD

@L

@ _qi
)dqi +

@L

@ _qi
LD(dq

i) : (3.52)

But the Lie derivative of any scalar function f : TQ! IR along any vector �eld X is

just X(f); and for the dynamical vector �eld D, this is just _f = @f

@qi
_qi + @f

@ _qi
�qi. So we

have

LD�L = (
d

dt

@L

@ _qi
)dqi +

@L

@ _qi
d _qi : (3.53)

Rewriting the �rst term by the Lagrange equations, we get

LD�L = (
@L

@qi
)dqi +

@L

@ _qi
d _qi � dL : (3.54)

We can conversely deduce the familiar Lagrange equations from eq. 3.54, by taking

coordinates. So we conclude that these equations' coordinate-independent form is:

LD�L = dL : (3.55)

(4): Limitations:|

Finally, a comment about the Lagrangian framework's limitations as regards solving

problems, and how they prompt the transition to Hamiltonian mechanics.

Recall the remark at the end of Paragraph 3.3.2.B (2), that the n equations eq.

3.45 are in general hard to solve for the �qi(t0): they lie buried in the left hand side of

eq. 3.45. On the other hand, the n equations _qi = dqi

dt
(the second group of n equations

in (1) above) are as simple as can be.

This makes it natural to seek another 2n-dimensional space of variables, �� say

(� = 1; :::; 2n), in which:

(i): a motion is described by �rst-order equations, so that we have the same

advantage as in TQ that a unique trajectory passes through each point of the space;

but in which

(ii): all 2n equations have the simple form d��

dt
= f�(�

1; :::�2n) for some set of

functions f�(� = 1; :::; 2n).

Indeed, Hamiltonian mechanics provides exactly such a space: viz., the cotan-

gent bundle of the con�guration manifold, instead of its tangent bundle.
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4 Lagrangian mechanics: variational principles and

reduction of problems

4.0 Preamble This Section will begin with conceptual discussion, and then move

to more technical matters. I will �rst introduce the two main variational principles of

Lagrangian mechanics: the principle of least action (understood as it was by Lagrange

and Euler), and Hamilton's Principle; (Section 4.1).

Beware: Hamilton's Principle is often called a (or even: the) least action princi-

ple. Indeed, a more general warning is in order. `Action' has, unfortunately, various

meanings; there is no agreed and exact usage, though it always has the dimension of

momentum � length = energy � time. In this Section, action will tend to mean the

integral with respect to time, along a possible history or trajectory of the system in

con�guration space, of a quantity with the dimension of energy:
R
E dt.

(But the companion paper will give increasing prominence to:

(i) the integral (not always along a possible history of the system!) of a momentum

p with respect to length
R
p dq; or more generally, summing over degrees of freedomR

�i pi dqi;
40 and

(ii) the integral (again, not always along a history) of the di�erence,
R
�i pi dqi�E dt.)

After Section 4.1, Hamilton's Principle takes centre-stage. Its technical features are

reported in Sections 4.2, 4.3. Then the rest of the Section is dominated by the theme

of symmetry: especially, how a symmetry can help reduce the number of variables of

a problem|again, the merit (Reduce).

First, I introduce generalized momenta in the context of the conservation of energy

(Section 4.4). Section 4.5 begins with the simple but important result that the gener-

alized momentum of any cyclic coordinate is a constant of the motion, and so reduces

the dimension of the dynamical system by one. The rest of the Section develops this

result in two ways.

(1): First, I describe the method of Routhian reduction. This leads to Section 4.6's

explanation of how, starting from Hamilton's Principle, Routhian reduction applied to

time as a cyclic coordinate recovers Euler's and Lagrange's principle of least action.

The discussion will also cover another famous variational principle of Lagrangian me-

chanics, Jacobi's principle.

(2): Finally in Section 4.7, I describe Noether's theorem, which provides a powerful

general perspective on symmetry.

(All these aspects of this Section's discussion of symmetry will have analogues, and

further developments, in Hamiltonian mechanics.)

As regards my four morals, this Section will illustrate all of them. But the main

morals will be prominent:

(i): the four merits of (Scheme); i.e. (Fewer), (Wider), (Reduce) and (Separate); as

just discussed, (Reduce) will be especially prominent in connection with symmetries.

(ii): all three grades of (Modality); but especially the third grade, (Modality;3rd),

40
R
�i pi dqi is the canonical one-form, which is central to Hamiltonian mechanics.
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which involves considering possibilities that violate the actual laws.

4.1 Two variational principles introduced

Analytical mechanics contains many variational principles, which are closely related

(and in some cases equivalent) to one another. But I will focus on just two principles,

and their relationship to each other: Euler's and Lagrange's \principle of least action";

and Hamilton's Principle.41 In this Subsection, I introduce them without technicalities.

In particular, I will present them as using two di�erent kinds of `variation of a path':

a distinction that I will gloss philosophically in terms of (Modality)'s three grades of

modal involvement.

4.1.1 Euler and Lagrange

For simplicity, let us consider a single point-particle in a time-independent potential

V = V (r); in short, a conservative one-particle system. (We will remark later that the

principle in fact applies much more widely.) Suppose one is given the initial conditions

that the particle is at spatial point P1 at time t1, with a given total energy E =

T + V (P1) compatible with the value of V (P1), i.e. E � V (P1). Then for any spatial

path  starting from P1, the initial conditions, together with the conservation of energy,

determine the particle's motion over the next time-step, if we assume that it must start

out travelling along . For the initial value of T and the speci�cation of  determine

an initial velocity. And so they determine at which point P 0 along  the particle will

be at time t1 + dt i.e. an in�nitesimal time-step later. Furthermore, the conservation

of energy, and value of V (P 0) determine (by T = E � V (P 0)) what the speed of the

particle is at the time t1 + dt. The argument can be iterated. That is: if we assume

that also at time t1 + dt the particle must continue to travel along our chosen path  ,

then its motion over the next time-step is determined|and so on.42

Of course, we chose  arbitrarily; and so (since V is given) we were almost certainly

wrong to suppose that the particle must follow , even assuming it starts out along 

at time t1. That is: the imagined motion is not just counterfactual but contralegal:

it violates the dynamical laws (i.e. Newton's equations). But Euler and Lagrange

discovered that: for this system, these laws are equivalent to a statement about a

whole class of possible paths through P1. To formulate this statement, �rst note that

the previous paragraph also shows: The initial conditions and the requirement of energy

conservation at all times also determine, for any time-interval [t1; t2], the time-integral

of T along the path . And similarly, for any other possible path, � say, through P1:

41The history of the principles' discovery and evolution is fascinating: in particular, Lagrange himself

worked with Hamilton's Principle|the name was coined by Jacobi, and only became prevalent in the

20th century. But I will not go into this history.
42By the way: the argument so far clearly also works for V a prescribed [i.e. independent of the

particle] function of time. But the principle of least action , to follow, requires V independent of time.
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the initial conditions, in particular the initial energy, and the requirement of energy

conservation at all times determine, what the time-integral of T along � would be if

the particle were to traverse �.

We can now state Euler's and Lagrange's principle of least action, for a single

particle. The idea is as follows: Given

(i): the initial conditions that the particle is at spatial point P1 at time t1, with a

given velocity v (which �xes the total energy E = T + V (P1)); and given also

(ii): the particle later passes through the point P2 (i.e. one assumes that P2 lies on

the particle's actual spatial path,, as determined by the dynamical laws and the given

potential V ): it follows that

(iii): the actual path traversed will be that path among all possible paths connecting

P1 to P2, motion along which, with a common �xed initial energy E, makes the time-

integral of T along the path, a minimum.

That is the idea. But (iii) needs amendment. For the actual path might not make

the integral a minimum: even in comparison with just the class of all paths close to

the actual one, rather than all possible paths. The precise statement of the principle

is rather that the actual path makes the integral stationary in comparison with all

suÆciently close paths.

Here `stationarity' means that a derivative is zero. The details are made precise in

the calculus of variations, and reviewed in Section 4.2. For the moment, we only need

the idea that, as in elementary calculus, a zero derivative is compatible, not only with

a minimum of the function in question, but also with a maximum or a turning-point

of it. (We similarly replaced minimality by stationarity at the end of Section 3.2.1.)

This distinction, between minimization and stationarity of a function, has both a

historical and a terminological signi�cance|and both points will apply just as much

to Hamilton's Principle as to the principle of least action.

Historically, some early advocates of the principle of least action asserted that the

actual path minimized the integral. Besides, this was regarded as a remarkable \eÆ-

ciency" or \economy" on the part of Nature|and as suggesting a proof of the existence

of God. The main example of this tendency is Maupertuis, who announced (an ob-

scure form of) the principle, claiming minimization, in 1744. But already in the same

year, Euler published his ground-breaking treatise on the calculus of variations, in an

addendum of which the principle is expounded as a precise theorem. (For details, cf.

Fraser (1994); or more briey, Kline (1972: 577-582), Yourgrau and Mandelstam (1979:

19-29).) In due course, it became clear that only the stationarity version of the princi-

ple held good; and similarly, that Hamilton's Principle (Section 4.1.2) was a matter of

stationarity, not of minimization. Thus for example, Hamilton in 1833 criticized the

idea of minimization, noting that `the quantity pretended to be economized is in fact

often lavishly expended': so he preferred to speak of a `principle of stationary action'.

This distinction also raises a signi�cant mathematical question, regardless of me-

chanics: what are the necessary or suÆcient conditions, for problems in the calculus

of variations, of securing a minimum rather than just stationarity? Though the inves-
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tigation of this question has a long and distinguished history (starting essentially with

Legendre in 1786), and a good deal is now known about it, we will not need any of these

details. (For the history, cf. Kline (1972: 589-590, 745-749); for the technicalities, cf.

e.g. Courant and D. Hilbert (1953: 214-216), Fox (1987: Chapters 2, 9).)

Finally, this distinction also has a terminological aspect. It is easier to say `minimize

a function' or `extremize a function' (where `extremize' means `minimize or maximize'),

than to say `render a function stationary': there is no English word `stationarize' ! So

despite the remarks above, I shall from now on (for Hamilton's Principle as well as

the principle of least action) usually say `minimize' or `extremize': in fact, this is a

widespread practice in the textbooks. But `stationarize' is to be understood!

This principle of least action for a single particle is a remarkable principle|and a

�ne example of (Reformulate). But much more is true: the principle can be extended

to systems with an arbitrary number N of particles. Here, I do not just mean the

trivial N -fold conjunction of the one-particle principle, which follows immediately if

we assume no particle-particle interactions (and no collisions in the time-period).43 I

mean, rather, that for any system (i) which is conservative, and (ii) for which the

constraints, if any, are ideal, holonomic and scleronomous (so that we can work in the

constraint surface): a corresponding principle holds.

This will be stated very precisely in Section 4.6. For the moment, we only need the

main idea, that:

For such a system, whatever the details of the interactions between its parts

(encoded in V ), the representative point in con�guration space moves along

the curve between given initial and �nal con�gurations that makes station-

ary (in comparision with neighbouring curves) the time-integral along the

curve of the total kinetic energy T .

This is a very striking, even amazing, principle; both technically and philosophically.

Technically, one can apply the calculus of variations to deduce the corresponding Euler-

Lagrange equations; (Section 4.2 gives more explanation). Indeed, Euler and Lagrange

did just this, obtaining the correct equations of motion for conservative systems that,

if constrained, have ideal, holonomic and scleronomous constraints.

As regards philosophy, there are three immediate comments. The �rst concerns my

morals; the other two are more general, and have a historical aspect.

(1): Morals:|

Clearly, the principle is a �ne illustration of (Scheme), and the merit (Fewer). (Once

43That is:| Given a system ofN point-particles, at spatial points P11
; : : : ; P1N

at time t1, subject to

an external potential V (r), and with given initial velocities v1; : : : ;vN (and so initial kinetic energies

T1(t1); : : : ; TN (t1)); and given N points P21
; : : : ; P2N

(mutually distinct and in general distinct from

P11
; : : : ; P1N

), through which, respectively, the N particles later pass (with no collisions): for each

particle i, the actual path traversed will be the path connecting Pi1 to Pi2 , motion along which, with

a �xed initial energy Ei = Ti(t1)� V (Pi1 ) common to all comparison paths, makes the time-integral

of Ti, along the path, stationary.
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Section 4.2 connects it with the Euler-Lagrange equations, we shall also see the other

merits, (Wider) etc.; and the moral (Reformulate).)

The principle is also a �ne illustration of (Modality). Recall that Section 2.2.1 dis-

tinguished three broad grades of modal involvement: (Modality;1st) to (Modality;3rd).

In (Modality;1st) we keep �xed the problem and laws of motion, but vary the initial

and/or �nal conditions;44 while in (Modality;2nd) we consider various problems but

again keep �xed the laws of motion; and in (Modality;3rd) we vary the laws of motion

in the sense that we consider histories that violate the actual laws (for the given forces,

i.e. problem).

Broadly speaking, the principle of least action illustrates all three grades, though

there is a minor wrinkle about (Modality;1st).

Applying the principle to a given problem obviously involves (Modality3rd): most

of the various counterfactual histories, along the paths not traversed, are contralegal.

And the principle itself clearly involves (Modality;2nd), since it generalizes across a

whole class of problems.

The wrinkle about (Modality;1st) is that, despite the variety of positions and speeds

at intermediate times (i.e. times after t1 but before arrival at P2), the principle does

not vary the initial or �nal conditions in the sense of position and speed. The reason is

that

(i): the given initial position P1, and so V (P1), and velocity v determine a total

energy E; (indeed, to determine E, one needs only V (P1) and the speed v); and

(ii): the conservation of the energy E, together with the given �nal position P2,

and so V (P2), determines the speed with which the particle would arrive at P2 along

any path|whether the unique dynamically allowed one, or another one.

Nevertheless the principle illustrates (Modality;1st). For the variety of paths makes

for a variety of (both initial and �nal) velocity or momentum, though not of speed|and

that variety counts as varying the initial and �nal conditions.

(2): Other formulations:|

Historically, the principle for a single particle was of course formulated �rst; and it

was often formulated in terms of minimizing the integral along the path of the particle

of the momentum mv, with distance s as the integration variable. (Thus wrote Euler

in 1744.) It was also formulated in terms of the integral of twice the kinetic energy

2T , with time as the integration variable. These alternative formulations are trivially

equivalent to the single-particle principle above. But they are historically important,

because of the role they played in discussions of the relative dynamical importance of

momentum and kinetic energy; in particular, in the controversy about vis viva, which

was in e�ect de�ned as 2T . I shall not need the �rst alternative, using
R
mv ds, at all.

But in Section 4.6, I shall recover the second (with 2T ) from Hamilton's Principle.

44In some usages of the word `problem', varying the initial conditions would count as varying the

problem. But not mine: in Section 2.2.1, I stipulated that a problem is speci�ed by the number of

degrees of freedom and the forces involved, here coded in the potential function; (and more generally

in a Lagrangian or Hamiltonian).
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(3): Teleology foresworn:|

The principle's reference to the �nal con�guration suggests teleology and �nal causes:

that the values attained by the integral at the end of various possible trajectories

through con�guration space somehow determines (or even: causes or explains) from

the start which trajectory is traversed. (This is clearest for our �rst case, the single

particle: it looks as if the particle's �nal position determines which path it takes to

that position.)

This suggestion is of course not peculiar to this principle. It arises for any varia-

tional principle that �xes a �nal condition (in time), and so it is endemic in analytical

mechanics. In particular, we will see that Hamilton's Principle similarly refers to the

�nal con�guration of the system. Accordingly, this aspect of analytical mechanics has

been much discussed. Indeed, teleology was the dominant topic in philosophical dis-

cussion of variational principles, from the beginnings in the eighteenth century (with

Maupertuis' theological arguments, mentioned above), to Planck's advocacy of them

in the late nineteenth century: a dominance which helps explain the logical empiricists'

strong rejection of variational principles. (For discussion and references, cf. Yourgrau

and Mandelstam (1979: 163-165, 173-175) and St�oltzner (2003).)

But I shall not pursue this topic, for two reasons. First, it would involve discus-

sion of causation and explanation|large subjects beyond my scope. Second and more

important: there is a strong reason to reject an interpretation of the principle, and

of other �nal-condition variational principles in analytical mechanics, in terms of �nal

causes|as against one in terms of eÆcient causes. This reason is based on the formal-

ism of mechanics, and does not depend on any general philosophical objections to �nal

causes.

Namely: given such a principle, the calculus of variations deduces a set of di�eren-

tial equations, the corresponding Euler-Lagrange equations, which are (in the cases we

will consider) equivalent to the principle; and these equations suggest an interpretation

in terms of eÆcient causes. In particular, we will see that Lagrange's equations in their

most familiar form, eq. 3.39, are equivalent to Hamilton's Principle for a holonomic and

monogenic system. Recalling that these equations are n second-order equations (for n

degrees of freedom), and so need n positions and velocities as initial conditions (just

like Newton's equations), we can surely regard the initial conditions, together with the

equations, as determining (or causing or explaining) which trajectory in con�guration

space is traversed; (and so in particular, the value of the integral of T ).

This interpretation is surely just as good as the one in terms of �nal causes. Be-

sides, we can similarly defend an eÆcient-cause interpretation for principles other than

the principle of least action and Hamilton's; (though I will not go into details).45

To sum up this Subsection: Euler and Lagrange discovered that for any conservative

system that, if constrained, has ideal, holonomic and scleronomous constraints: two

45I claim no originality for appealing to the Euler-Lagrange equations to suggest an eÆcient-cause

interpretation of variational principles, as a reply to the proposed �nal-cause interpretations. This

appeal is common enough; e.g. Torretti (1999: 92). But so far as I know, my emphasis on modality,

here and in (2004e), is novel.
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functions, T and V , determine the motion of the system, by a principle that selects

the actual motion from a whole class of conceivable motions. Note that the motions in

the class have a common �xed start-time t1, common initial and �nal con�gurations,

and a common �xed energy (and so a common T (t1)). So the times of arrival at the

�nal con�guration vary. This will not be so for Hamilton's Principle.

4.1.2 Hamilton

Hamilton's Principle replaces Euler and Lagrange's \common-energy, varying arrival

times" variation, with a variation that has \varying energies, common arrival time".

But as for Euler and Lagrange, the variations have �xed initial and �nal con�gurations

(i.e. spatial positions P1; P2 for one particle, and fPi1;Pi2g for N particles).

With this kind of variation, it turns out that for many kinds of system, just one

function determines the motion, again via a variational principle that selects the actual

motion by comparison with a class of \nearby" motions. In particular, for a conserva-

tive system that, if constrained, has ideal and holonomic constraints, the function is

the Lagrangian, the di�erence L := T � V of the total kinetic and potential energies

of the system.

That is: Hamilton's Principle for such a system, consisting of N particles, says:

The actual motion between a con�guration fPi1g at time t1 and fPi2g at

time t2 will be the motion that makes stationary the time-integral, along

the trajectory in con�guration space, of L := T � V .

This calls for two immediate comments. The �rst concerns my morals; the second is

about Hamilton's Principle's advantages over the principle of least action.

(1): Morals:|

Like the principle of least action, Hamilton's principle is a �ne illustration of (Scheme),

and (Fewer); and we will later see the other merits, (Wider) etc.

And again like the principle of least action, Hamilton's Principle illustrates all three

grades of modal involvement. But the details about (Modality;1st) and (Modality;3rd)

are a bit di�erent from the case of the principle of least action, because now the various

histories have varying energies and a common arrival time. There are two points here.

First: even for a single problem (speci�ed by a number of degrees of freedom and

the forces), the counterfactual histories have to have di�erent energies one from an-

other, in order for them to have a common arrival time; e.g. a constituent particle

could have di�erent initial speeds in two histories. This illustrates (Modality;1st) and

(Modality;3rd), as the principle of least action did. But in so far as one �nds it un-

natural in counterfactual suppositions to �x some future actual fact (arrival time),

and thereby have to counterfactually vary present facts (energy, speed)|rather than

vice versa|one will �nd Hamilton's Principle's (Modality;1st) more \radical" than the

principle of least action's.

Second: for Hamilton's Principle, the energy is in general not preserved (constant)
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within a counterfactual history|even for a system that actually obeys the conserva-

tion of energy, i.e. a conservative scleronomous system. Indeed, for any problem with

prescribed initial and �nal conditions: almost all (in a natural measure) of the histories

considered will violate energy-conservation. This is because Hamilton's principle con-

siders all smooth curves in con�guration space that are close to the actual trajectory;

(details in Section 4.2).

(1): Advantages:|

I emphasise the three main advantages of Hamilton's Principle over Euler and La-

grange's principle of least action. In ascending order of importance, they are:{

(i): It encompasses the principle of least action, in two senses. First, it immediately

yields the Euler-Lagrange equations, eq. 3.39|describing conservative systems, whose

constraints, if any, are ideal, holonomic and scleronomous|that the principle of least

action also obtains; cf. Section 4.2. Second, it explains how the principle of least action

obtains those equations; cf. Section 4.6.

(ii) It can be extended to other kinds of system, even some non-holonomic systems.

For some of these kinds, it again uses as its integrand L = T � V (Section 4.2); for

others, it uses an analogous integrand; (cf. Section 4.3).

(iii) It leads to Hamilton's equations, and thereby to Hamiltonian mechanics; which

have various advantages over Lagrange's equations, and indeed Lagrangian mechanics;

cf. the companion paper.

The �rst two advantages will be spelt out in the sequel. I begin with an exact

statement of Hamilton's Principle.

4.2 Hamilton's Principle for monogenic holonomic systems

Beware: this Section's title is somewhat misleading, for two reasons. First, the discus-

sion is as usual restricted to ideal constraints, not just to monogenic and holonomic

systems.

Second and more important: `monogenic' is a slight misnomer. For one of my main

points will be that Hamilton's Principle with L = T � V as integrand is equivalent to

Lagrange's equations in the familiar form eq 3.39. As discussed in Section 3.3, these

equations are physically correct, i.e. follow from d'Alembert's principle, not only when

the potential V is time-independent and velocity-independent (i.e. conservative sys-

tems), or when V is time-dependent but velocity-independent, but also in some cases

of velocity-dependence, e.g. when eq. 3.40 holds. Such conditions are a mouthful to

say; and this Section's title abbreviates that mouthful in the somewhat more general

word `monogenic'. But this inaccuracy will be harmless.

Thus understood, Hamilton's Principle for a monogenic holonomic system says:|

The motion in con�guration space between prescribed con�gurations at
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time t1 and time t2 makes stationary the line integral

I =
Z t2

t1

L(q1; : : : ; qn; _q1; : : : ; _qn; t) dt (4.1)

of the Lagrangian L := T �V . (Note the inclusion of time t as an argument

to allow V to be time-dependent.)

Hamilton's Principle (in this form) is a necessary and suÆcient condition for Lagrange's

equations, i.e. eq. 3.39: ((Scheme) with merits (Fewer) and (Wider), again). I will not

prove necessity; (for this, cf. e.g. Whittaker (1959: Section 99: 245-247) and Lanczos

(1986: 58-59, 116)). But I show suÆciency, since the argument:

(i) simply applies the basic result of the calculus of variations, that the uncon-

strained stationarity of an integral requires the Euler-Lagrange equations; and

(ii) makes clear that the Principle involves (Modality;3rd), as announced in Section

4.1.2.

The basic result of the calculus of variations:|

The variation, with �xed end-points, of an integral

J =

Z x2

x1

f(y1(x); : : : ; yn(x); _y1(x); : : : ; _yn(x); x) dx (4.2)

(where the dot _ indicates di�erentiation with respect to x) is obtained by consid-

ering J as a function of a parameter � which labels the possible curves yi(x; �).

We take y1(x; 0); y2(x; 0); : : : as the solutions of the stationarity problem; and we let

�1(x); �2(x); : : : be arbitrary functions except that they vanish at the end-points, i.e.

�i(x1) = �i(x2) = 0 8i. Then we write:

yi(x; �) = yi(x; 0) + ��i(x) 8i: (4.3)

(Such variations can be analysed using the idea of a functional derivative, and for

in�nite i.e. continuous systems they need to be; but I shall not need that idea.)

The condition for stationarity is then that

 
@J

@�

!
�=0

= 0; (4.4)

and the variation of J is given in terms of that of � by

ÆJ =
@J

@�
d� =

Z x2

x1

�i

 
@f

@yi

@yi

@�
d� +

@f

@ _yi

@ _yi

@�
d�

!
dx: (4.5)

Integrating by parts, for each i, the second term in the integrand, and using the fact

that the variations Æyi = (@yi
@�
)0d� are independent, we get that ÆJ = 0 only if

@f

@yi
=

d

dx

@f

@ _yi
8i = 1; : : : ; n; (4.6)

70



which are called the Euler-Lagrange equations. (They �rst occur in a 1736 paper of

Euler's. But the Æ-notation and this neat deduction is due to Lagrange: he developed

his approach in letters to Euler from 1754, but �rst published it in 1760: Kline (1972:

582-589), Fraser (1983, 1985).)

We remark that for a variational principle that uses �xed end-points, the integrand

is undetermined up to the total derivative with respect to the independent variable

x of a function g(y). That is: suppose we are given a variational principle ÆJ :=

Æ
R
fdx = 0, and accordingly its Euler-Lagrange equations. Then exactly the same

Euler-Lagrange equations would arise from requiring instead ÆJ 0 := Æ
R
[f + dg

dx
]dx = 0.

For the end-points being �xed means that Æ
R dg

dx
dx = Æ[g(x2) � g(x1)] � 0; so that

ÆJ = 0 i� ÆJ 0 = 0.

Though simple, this result is important: it corresponds to the result in Paragraph

3.3.2.D that Lagrangians di�ering by a total time derivative determine identical La-

grange's equations. (It also underlies the idea of generating functions for canonical

transformations|developed in the companion paper.)

Now I return to mechanics. Consider a monogenic holonomic system: Hamilton's

system implies, by the above argument but with the substitutions

x! t ; yi ! qi ; f ! L; (4.7)

Lagrange's equations (3.39), i.e.:

@L

@qi
=

d

dt

@L

@ _qi
8i = 1; : : : ; n: (4.8)

The use of arbitrary functions � in the variation problem means that the Principle

mentions contralegal histories, illustrating (Modality;3rd).

Note that the assumption of holonomic constraints is used in the argument; for we

appeal to independent variations Æqi to get eq. 4.8, in the way we got eq. 4.6 from eq.

4.5. (For the modi�cation of Hamilton's Principle to cover non-holonomic systems, see

the next Subsection.)

On the other hand, the argument proceeds independently of how L is de�ned, and

so of the assumption of monogenicity. The role of this assumption is, rather, to limit

of the scope of Hamilton's Principle, for the sake of empirical correctness (cf. Lanczos

1986: 114).

This deduction of Lagrange's equations from Hamilton's Principle implies that they

have an important property. Namely, they are covariant under coordinate transforma-

tions (point-transformations) qj ! q0j; (the merit (Wider)). For since the stationarity

of a de�nite integral is ipso facto independent of a change of the independent variable,

qj ! q0j, deducing Lagrange's equations from Hamilton's Principle implies the covari-

ance of the equations (a covariance that holds even if the point-transformation qj ! q0j
is time-dependent). (This property also followed from the deduction from d'Alembert's

principle; cf. Paragraph 3.3.2.C.)
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I end this Section by discussing the relation between Hamilton's Principle and

d'Alembert's principle. As I mentioned at the start of Section 3.3.1, one can de-

duce Hamilton's Principle from d'Alembert's principle. More precisely, one can deduce

Hamilton's Principle in the above form|for a holonomic system whose applied forces

are monogenic with their work function U independent of velocities|from d'Alembert's

principle for such a system. Besides, the deduction can be reversed: this is an equiva-

lence, illustrating (Reformulate).

Lanczos (1986: 111-113) gives details of this. So does Arnold (1989: 91-95).

Arnold's discussion has the merit that it also formulates an equivalence with the

conception of a constrained system as a limit (cf. eq. 3.43 in Paragraph 3.3.2.A)|

(Reformulate) again! But Arnold also assumes conservative systems, and makes some

use of modern geometry. I will just summarize Lanczos' deduction in the �rst direction,

i.e. from d'Alembert's principle to Hamilton's Principle.

The idea is to overcome the intractable because polygenic character of the inertial

forces, by representing them by the kinetic energy T (and by boundary terms that, by

the variation in Hamilton's principle having �xed end-points, are equal to zero). One

integrates, with respect to time, the total virtual work Æw done by what Section 3.3.1

called the `e�ective forces': i.e. the work done by the di�erence between the applied

force on particle i, Fi and the rate of change of i's momentum, _pi, summed over i.

d'Alembert's Principle sets this total virtual work Æw equal to 0. So we write,

summing over particles i and working in cartesian coordinates:

Z
Æw dt =

Z
�

 
Fi �

d

dt
(mivi)

!
� Æri dt = 0 (4.9)

Assuming that the Fi are monogenic with their U independent of velocities, and setting

V = �U , we deduce (by integrating by parts) thatZ
Æw dt = Æ

Z
L dt� [� mivi � Æri]t2t1 = 0 where L := T � V: (4.10)

Then requiring that the Æri vanish at the end-points of the integration makes the

right-hand side the variation of a de�nite integral: i.e.Z
Æwdt = Æ

Z
L dt = 0 with L := T � V: (4.11)

Finally, the assumption that the system is holonomic (i.e. qj freely variable) means

that the variations in this last equation match those of Hamilton's principle.46

4.3 Extending Hamilton's Principle

In this Subsection, I discuss (simplifying Goldstein et al (2002: 46f.)) how Hamilton's

Principle can be extended to some kinds of non-holonomic system. But warning: this

46By the way: the boundary term that is here zero will later be very important in Hamiltonian

mechanics and Hamilton-Jacobi theory. It is essentially the canonical one-form I mentioned before.
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Section can be skipped, in that its material is not central to the rest of this paper.

However, the topic does illustrate the merit (Reduce); and it involves an important

application of Lagrange's method of undetermined multipliers, viz. its application

to extremizing integrals. I begin with an interlude about this; (for more details, cf.

Lanczos (1986: 62-66)).47

4.3.1 Constrained extremization of integrals

Recall from Section 3.2.2 the main idea of Lagrange's method. We are to �nd the point

x0 := (x01 ; : : : ; x0n) at which Æf = 0 for small variations x0 � x0 such that gj(x
0) =

gj(x
0

1; : : : ; x
0

i; : : : ; x
0

n) = 0 for j = 1; 2; : : : ; m. So de�ning h(x) = f(x) + �j�jgj(x), we

have:

Æh = Æf + �j �jÆgj = 0 , i.e.
@f

@xi
+ �j �j

@gj

@xi
= 0; i = 1; : : : ; n (4.12)

We use these n equations, together with the m equations gj(xi) = 0 to �nd the n+m

unknowns (the n xi and the m �j).

I now show how to apply this technique to the case where f is an integral; treating

�rst (A) holonomic, then (B) non-holonomic, constraints. With an eye on applications

to Hamilton's Principle, I assume the independent variable of the integral is time t, i.e.

we are to extremize f =
R
F (qi; _qi; t) dt, subject to some constraints. Also:

(1): I will now use qs not xs to emphasise that the coordinates need not be cartesian.

(2) Because of the constraints, the qs in this Subsection (unlike Section 4.2) are not

independent.

(A): Holonomic constraints:| Assume that the constraints are holonomic, so that

we have equations gj(qi) = 0 for j = 1; : : : ; m. Then variation of the constraint

equations gives

Ægj = �i

@gj

@qi
Æqi for each j = 1; : : : ; m : (4.13)

Lagrange's method is to multiply each of these equations by an undetermined multiplier

�j. But since these constraint equations are to hold for each t, each �j becomes an

undetermined function of t, and an integral over t is added to the summation over j.

So the condition for extremization (the variational principle) is:

Æ
Z
F dt+

Z
(�1Æg1 + : : :+ �mÆgm) dt = 0: (4.14)

47Also beware: Lanczos remarks (1986: 92, 114) that Hamilton's principle applies only to holonomic

systems. That is wrong. Lanczos seems best interpreted as mis-reporting the true requirement (also

stated by him, p. 112) on Hamilton's principle in the form using L := T � V , that the applied forces

have a work function|so that we can write V = �U . The confusion arises because Lanczos also

sometimes (e.g. p. 85) takes holonomic (respectively: non-holonomic) constraints to be maintained

by monogenic (polygenic) forces. I deny that (cf. footnote 34 in Section 3.1.2). But even if it were

true, it would be a point about the forces of constraint, not about the applied forces. So it would not

make the true requirement above, that the applied forces have a work function, imply that Hamilton's

Principle is restricted to holonomic systems.
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Then the usual calculus of variations argument, using the fact that F = F (qi; _qi; t)

while each gj is a function only of the qi, leads to the Euler-Lagrange equations, for

each i = 1; : : : ; n:

@F

@qi
� d

dt

 
@F

@ _qi

!
+ �1

@g1

@qi
+ : : :+ �m

@gm

@qi
= 0: (4.15)

In other words: the original variational problem of extremizing
R
F dt subject to

gj(qi) = 0 is replaced by the equivalent problem of extremizing (subject to no con-

straints) Z
F + �1g1 + : : :+ �mgm: (4.16)

We have so far considered the �j as constants of the variation problem. But, as in

Section 3.2.1, comment (1), after eq. 3.18: we do not have to do so; and if we vary the

�j, we get back the constraint equations a posteriori.

(B): Non-holonomic constraints:| We now suppose that the constraints are non-

holonomic, so that we do not have equations gj(qi) = 0 for j = 1; : : : ; m. But suppose

that, as in Section 3.2.1, comment (2) and its eq. 3.19, we have di�erential constraint

equations

Ægj = �i GjiÆqi = 0 for each j = 1; : : : ; m: (4.17)

Lagrange's method again applies. We get again eq. 4.15, but with factors Gji (as in

eq. 3.19) replacing the
@gj
@qi

of eq. 4.15. That is, we get:-

@F

@qi
� d

dt

 
@F

@ _qi

!
+ �1G1i + : : :+ �mGmi = 0: (4.18)

We will see this in more detail with eq. 4.19 et seq. below.

4.3.2 Application to mechanics

It is the second case, (B), that we need when formulating Hamilton's Principle for non-

holonomic systems. I will consider only those non-holonomic systems whose equations

of constraint can be expressed as a relation between the di�erentials of the q's, i.e. can

be put in the form of say m equations

�i ajidqi + ajtdt = 0; j = 1; : : : ; m: (4.19)

The variation considered in Hamilton's Principle holds constant the time, so that vir-

tual displacements Æqi must satisfy

�i ajiÆqi = 0: (4.20)

This implies that for any undetermined functions of time �j(t), we have �j�iajiÆqi = 0.

We sum over j, and integrate over an arbitrary time interval, to getZ t2

t1

�i;j �jajiÆqi dt = 0: (4.21)
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We now assume the integrated statement of Hamilton's Principle in the form

Z t2

t1

dt �i

 
@L

@qi
� d

dt

@L

@ _qi

!
Æqi = 0; (4.22)

and add the equations, so that

Z t2

t1

dt �i

 
@L

@qi
� d

dt

@L

@ _qi
+ �j �jaji

!
Æqi = 0: (4.23)

We can then choose the �rst n � m of the Æqi freely (so that the last m are thereby

�xed); and we can choose the �j so that:

 
@L

@qi
� d

dt

@L

@ _qi
+ �j �jaji

!
= 0; for i = n�m+ 1; : : : ; n; (4.24)

(these are in e�ect equations of motion for the lastm of the qi). Then eq. 4.23 becomes

Z t2

t1

dt �n�m
i

 
@L

@qi
� d

dt

@L

@ _qi
+ �j �jaji

!
Æqi = 0; (4.25)

an equation which involves only the independent Æqi, so that we can deduce by the

usual calculus of variations argument

@L

@qi
� d

dt

@L

@ _qi
+ �j �jaji = 0 for i = 1; : : : ; n�m: (4.26)

Putting this together with eq 4.24 (and with � ! ��), we have n equations (cf. eq.

4.18)
@L

@qi
� d

dt

@L

@ _qi
= �j �jaji i = 1; : : : ; n: (4.27)

There are altogether n+m unknowns (the qi and �j). The other m equations are the

equations of constraint relating the qi's, now considered as di�erential equations

�i aji _qi + ajt = 0; j = 1; : : : ; m: (4.28)

Finally, I note that the �j again have the physical interpretation discussed in Para-

graph 3.2.2.B; (but now with �! ��, and without the assumption of cartesian coor-

dinates). This interpretation is related to the issue of justifying treating motion wholly

within the constraint surface, �rst raised after eq 3.4|and so to (Reduce), and also

(Ideal) and (Accept). For discussion, cf. the references given in Paragraph 3.2.2.B and

Lanczos (1986: 141-145) who relates the interpretation to the fact that the constraints

are microscopically violated.

So much by way of extending Hamilton's Principle to non-holonomic systems. NB:

The rest of this Section will assume that the constraints, if any, are holonomic|and

as usual, ideal.
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4.4 Generalized momenta and the conservation of energy

The rest of this Section is dominated by one idea: using a symmetry to reduce the

number of variables of a problem. First, in this Subsection, I introduce generalized

momenta and discuss the conservation of energy. This is a preliminary to Section

4.5's result that the generalized momentum of any cyclic coordinate is a constant of

the motion. Though very simple, that result is important: for it is the basis of both

Routhian reduction and Noether's theorem|which will take up the rest of the Section.

In Section 3.3 we deduced the conservation of energy, for a (ideal and holonomic)

system that is scleronomous in both work function and constraints, from d'Alembert's

principle|by choosing virtual displacements Æri equal to the actual displacements dri
in an in�nitesimal time dt. We can similarly deduce the conservation of energy for such

a system from Hamilton's principle, by considering such a variation for the generalized

coordinates qj, i.e. with dt = �

Æqj = dqj = � _qj: (4.29)

This deduction is important in that it introduces two notions which will be important

in what follows.

Since this variation does not �x the con�gurations at the end-points, we get a

boundary term when we perform the integration by parts in the usual derivation of the

Euler-Lagrange equations (cf. eq. 4.5 in Section 4.2.). That is, we get from Hamilton's

principle and an integration by parts

Æ
Z t2

t1

L dt =

"
�j

@L

@ _qj
Æqj

#t2
t1

(4.30)

Here we see for the �rst time two notions that will be central in the sequel.

(i): Generalized momenta:|

Elementary examples prompt the de�nition of the generalized momentum, pj, conjugate

to a coordinate qj as:
@L
@ _qj

; (Poisson 1809). So Lagrange's equations for a holonomic

monogenic system, eq. 4.8, can be written:

d

dt
pj =

@L

@qj
; (4.31)

and we can write eq. 4.30 as:

Æ
Z t2

t1

L dt = [�jpjÆqj]
t2
t1

(4.32)

Note that pj need not have the dimensions of momentum: it will not if qj does not have

the dimension length. And even if qj is a cartesian coordinate, a velocity-dependent

potential will mean pj is not the usual mechanical momentum.

(ii): The di�erential �jpjÆqj, as in the right-hand side of eq. 4.32:|

As I have mentioned, this will be important in Hamiltonian mechanics.
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If L does not depend on time explicitly, i.e. L = L(qj; _qj), then using dqj = � _qj )
d _qj = ��qj, we get:

ÆL = dL = � _L (4.33)

so that

Æ
Z
L dt =

Z
ÆL dt =

Z
� _L dt = � [L]

t2
t1
: (4.34)

Then eq. 4.32 implies

[�jpj _qj � L]
t2
t1
= 0: (4.35)

Since the limits t1; t2 are arbitrary, we get

H := �jpj _qj � L = constant (4.36)

This function H (`H' for `Hamiltonian') can be called the `total energy' of the system;

(though as we shall see in a moment, only under certain conditions is it the sum of

potential and kinetic energies).

We can also deduce directly from Lagrange's equations, rather than from Hamilton's

Principle, that H is constant for a system that is both:

(i) monogenic and holonomic (so that Lagrange's equations take the familiar

form 4.8), and

(ii) scleronomous, so that L is not an explicit function of time.

The deduction simply applies Lagrange's equations to the expansion of dL=dt:

dL

dt
= �i

@L

@qi
_qi +

@L

@ _qi
�qi: (4.37)

We get immediately that

H := �i _qipi � L (4.38)

is a constant of the motion.

Now let us add the assumption that the system is conservative in the sense that

(the applied) forces are derived from potentials, and that the potentials are velocity-

independent. Then, using again the assumption that the system is scleronomous, we

can show that H is the sum of potential and kinetic energies|as follows.

These assumptions imply that pi :=
@L
@ _qi

= @T
@ _qi

. Now recall from the discussion of

equation 3.42, that the system being scleronomous implies that T is a homogeneous

quadratic function of the _qi's. This means that the �rst term of H, i.e. �i _qipi = �i _qi
@T
@ _qi

must be 2T (Euler's theorem). So we have:-

H = 2T � (T � V ) = T + V: (4.39)

4.5 Cyclic coordinates and their elimination

4.5.1 The basic result

We say a coordinate qi is cyclic if L does not depend on qi. (The term comes from

the example of an angular coordinate of a particle subject to a central force. Another
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term is: ignorable.) Then the Lagrange equation for a cyclic coordinate qn say, viz.

_pn =
@L
@qn

, becomes _pn = 0, implying

pn = constant, cn say: (4.40)

So: the generalized momentum conjugate to a cyclic coordinate is a constant of the

motion.

In other words, thinking of pn as a function of the 2n + 1 variables q; _q; t, pn =

pn(q; _q; t), and using the terminology of Paragraph 2.1.3.A (iii): the motion of the sys-

tem is con�ned to a unique level set p�1
n (cn). And assuming scleronomous constraints,

so that we work with the velocity phase space (tangent bundle) TQ: this level set is a

(2n� 1)-dimensional sub-manifold of TQ.

So �nding a cyclic coordinate48 simpli�es the dynamical system, i.e. the problem

of integrating its equations of motion. The number of variables (degrees of freedom of

the problem) is reduced by one|the merit (Reduce) of my moral (Scheme).

This result is simple but important. For �rst, it is straightforward to show that

it encompasses the elementary theorems of the conservation of momentum, angular

momentum and energy; (Goldstein et al (2002: 56-63)). Let us take as a simple

example, the angular momentum of a free particle. The Lagrangian is, in spherical

polar coordinates,

L =
1

2
m( _r2 + r2 _�2 + r2 _�2 sin2 �) (4.41)

so that @L=@� = 0. So the conjugate momentum

@L

@ _�
= mr2 _� sin2 � ; (4.42)

which is the angular momentum about the z-axis, is conserved.

Secondly, this result leads into important theoretical developments about how to

use symmetries, so as to simplify (reduce) problems. The rest of this Section is devoted

to two such developments: in this Subsection, Routhian reduction; and later (Section

4.7), Noether's theorem. Noether's theorem will be more general in the sense that

Routhian reduction requires us to have identi�ed cyclic coordinates, while Noether's

theorem does not.

4.5.2 Routhian reduction

My discussion of Routhian reduction has two main aims:

(i): in this Subsection, to illustrate using symmetries to secure (Reduce); and

48Beware: The condition @L=@qn = 0 is of course a property not just of the coordinate qn, but of the

entire coordinate system, since partial derivatives depend on what other variables are held constant.

So one can have another coordinate system q
0 such that q0

n = qn but @L=@q0

n 6= @L=@qn. Besides, one

can have @L=@ _q0

n 6= @L=@ _qn, i.e. the momenta conjugate to q
0

n = qn are distinct.
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(ii) in Section 4.6, to vindicate Section 4.1.1's principle of least action from the

perspective of Hamilton's Principle. (Warning: This use of Routhian reduction is a

topic in the foundations of classical mechanics, not much related to my philosophical

morals: it will not be used later, and can be skipped.)

So suppose qn is cyclic. To exploit this fact so as to reduce the number of variables

in a mechanical problem, we can proceed in either of two ways: (a) after writing down

Lagrange's equations; or (b) before doing so. I treat these in order; Routhian reduction

is (b).

(a): Notice �rst that since qn does not occur in L, it does not occur in @L
@ _qn

, so that

we can solve pn =
@L
@ _qn

= cn for _qn as a function of the other variables, i.e.

_qn = _qn(q1; : : : ; qn�1; _q1; : : : ; _qn�1; cn; t) (4.43)

and substitute the right-hand side of this into Lagrange's equations. This reduces the

problem of integrating Lagrange's equations to a problem in n � 1 variables. Once

solved we can �nd _qn by eq. 4.43, and then �nd qn by quadrature. (Recall that

`quadrature' is jargon for integration of a given function: if we cannot do the integral

analytically, we do it numerically.)

(b): But we can also instead reduce the problem ab initio, i.e. when it is formulated

as a variational problem. This is Routhian reduction. It is important both historically

and conceptually. As to history, it was Routh who �rst emphasised the importance of

cyclic coordinates (and his work led to e.g. Hertz' programme in mechanics). And as

to conceptual aspects, Routhian reduction yields a proper understanding of how the

principle of least action is based on Hamilton's Principle. Indeed, since the principle

of least action preceded Hamilton's principle, and thus also this understanding, the

historical and conceptual roles are related|as we shall see in the next Subsection,

Section 4.6.49

Note �rst that we cannot just replace _qn in Hamilton's principle

Æ
Z
L(q1; : : : ; qn�1; _q1; : : : ; _qn�1; _qn; t) = 0 (4.44)

by the right-hand side of eq. 4.43. For eq. 4.43 makes _qn a function of the non-cyclic

variables in the sense that pn � @L
@ _qn

= cn is to hold not just for the actual motion

but also for the varied motions. This restriction on the variations is not objectionable

(since the integral's variation is to vanish for arbitrary variations). But the fact that

qn is obtained by a quadrature means that the variation of qn does not vanish at the

end-points. Rather we have (cf. eq 4.30):

Æ
Z
L dt = [pnÆqn]

t2
t1
: (4.45)

49Beware: many textbooks (including �ne ones like Goldstein et al) only treat Routhian reduction

as an aspect of Hamiltonian theory: in short as involving a Legendre transformation on only the cyclic

coordinates|details in the companion paper. That lacuna is another reason for describing Routhian

reduction within the Lagrangian framework. My discussion will follow Lanczos (1986: 125-140).
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But pn is constant along the system's (actual or possible) trajectory in con�guration

space, so that

[pnÆqn]
t2
t1
= pn Æ

Z
_qn dt = Æ

Z
pn _qn dt (4.46)

so that eq. 4.45 becomes

Æ
Z
(L� pn _qn) dt = 0: (4.47)

To sum up: our problem is reduced to extremizing a modi�ed integral in n�1 variables

Æ
Z
(L� cn _qn) dt = 0; (4.48)

where qn does not occur in the modi�ed Lagrangian �L := L � cn _qn; and nor does

_qn explicitly occur, since it is eliminated by using eq. 4.43, i.e. the momentum �rst

integral @L
@ _qn

= cn.

Once this problem in n�1 variables is solved, we again (as at the end of (a) above)

�nd _qn by using the momentum integral eq. 4.43; and then we �nd qn by quadrature.

We can easily adapt the argument of (b) to the case where the given problem has

more than one cyclic coordinate. The modi�ed Lagrangian �L subtracts the correspond-

ing sum over cyclic coordinates:

�L := L� �
k ignorable ck _qk : (4.49)

Three �nal comments. (1): Anticipating the companion paper a little:| This

kind of subtraction of pn _qn from the Lagrangian will be crucial in the discussion of

the Legendre transformation which carries us back and forth between the Lagrangian

and Hamiltonian frameworks. This is the reason why, as mentioned above, Routhian

reduction is often treated in textbooks just as an aspect of Hamiltonian theory: in

short as involving a Legendre transformation on only the cyclic coordinates.

(2): This reduction has consequences for the form of the modi�ed Lagrangian
�L := L� cn _qn; (details in Lanczos: 128-132).

First: there is a new velocity-independent potential term. (An historical aside:

This fostered Hertz's (1894) speculation that mechanics could be forceless, i.e. that all

macroscopically observable forces are analysable in terms of monogenic forces whose

potential energy arises in just this way from the elimination of cyclic microscopic coor-

dinates. Hertz's proposal reects, and contributed to, a long tradition of philosophical

suspicion of forces. The root idea, present already in the seventeenth century, was that

forces are unobservable while other quantities in mechanics, especially mass, length

and time, are observable. For details, cf. Lutzen (1995).)

Second: in general, the reduction also gives new kinetic terms in �L which are linear

in the generalized velocities _qi; i = 1; 2; : : : ; n� 1 (called `gyroscopic terms').

(3): Note that Routhian reduction assumes we have identi�ed cyclic coordinates. In

Section 4.7, Noether's theorem will provide a perspective on symmetry and constants

of the motion that does not assume this.
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4.6 Time as a cyclic coordinate; the principle of least action;

Jacobi's principle

Warning: This Section can be skipped: it is not used later on. But I include it on two

grounds:|

(i): It is worth seeing how to use Routhian reduction to understand the principle

of least action (and another principle, Jacobi's), with which we began in Section 4.1.1.

(ii): It illustrates the idea of a parameter-independent integral, which came up in

Paragraph 3.3.2.B, (2), in connection with the fact that the Hessian condition can fail;

though this paper will not pursue the topic.

Any holonomic system whose Lagrangian does not contain time explicitly provides

an important case of the theory of Section 4.5. For with such a system we can take the

time itself as a cyclic coordinate. If furthermore the system is conservative (i.e. forces

are derived from potentials, and the potentials are velocity-independent) and also the

system is scleronomous, so that �pj _qj = 2T (cf. end of Section 4.4), then the theory

of Section 4.5 yields the principle of least action|i.e. the variational principle at the

centre of Lagrange's and Euler's formulations of analytical mechanics.

But there are subtleties about this principle. As we shall see, the correct form of

this principle is due to Jacobi. And on the other hand, we shall also be able to explain

why earlier authors like Lagrange were able to get the right Euler-Lagrange equations

for holonomic conservative scleronomous systems|even though some of these authors

lacked Hamilton's Principle.

If the Lagrangian L of a holonomic system does not contain time explicitly, we

can treat time t `like the qs', to give a problem in n + 1 variables. That is, we write

the integral to be extremized (by Hamilton's principle) in terms of a di�erentiable

parameter � = �(t), which is such that d�=dt > 0 but is otherwise arbitrary; (for more

discussion of why this can be useful, cf. e.g. Butter�eld (2004c: Sections 5,7)). So with

a prime indicating di�erentiation with respect to � , and dt � dt
d�
d� � t0d� , Hamilton's

Principle becomes

Æ
Z
L

 
q1; : : : ; qn;

q01
t0
; : : : ;

q0n
t0

!
t0 d� = 0: (4.50)

So the generalized momentum conjugate to t must be conserved. One immediately

calculates that this momentum is the negative of the Hamiltonian as de�ned in general

by eq. 4.36. That is:

pt :=
@(Lt0)

@t0
= L�

 
�j

@L

@ _qj

q0j
t02

!
t0 = L� �j pj _qj = constant.50 (4.51)

But now let us apply the theory of Section 4.5. That is: let us eliminate t, to get

a reduced variational problem|which will determine the path in con�guration space

50As we also saw in Section 4.4, if the system is conservative and scleronomous, the Hamiltonian

is the sum of the kinetic and potential energies, so that we here get yet another derivation of the

conservation of energy: (Reformulate) again!
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without regard to the passage of time. The modi�ed Lagrangian is:

�L := Lt0 � ptt
0 = �j pj _qj t

0 (4.52)

so that the reduced variational problem is

Æ
Z
�j pj _qj t

0 d� = 0: (4.53)

If furthermore the system is conservative and scleronomous, so that �pj _qj = 2T , we

can write this as:

Æ 2

Z
T t0 d� = 0: (4.54)

Eq. 4.54 is the principle of least action of Section 4.1.1. But as Jacobi emphasised,

we should not write this

Æ 2

Z
T dt = 0; (4.55)

since the cyclic coordinate t obviously cannot be used as the independent variable of

our problem: t does not occur in eq. 4.54.

However, eq. 4.55 does occur in the earlier authors using the principle of least

action, e.g. Euler and Lagrange themselves.51 At the end of this Subsection, I will

report how the practice of Euler and his contemporaries was in fact justi�ed, by using

Lagrange's method of multipliers (the �-method).

Let us now apply the theory of Section 4.5 to the principle of least action, i.e. to

our modi�ed Lagrangian problem eq. 4.54. We need to undertake two stages:

(i) to eliminate the corresponding velocity t0, by solving for this velocity the equation

saying that the corresponding momentum is constant, i.e. by solving eq. 4.51 for t0;

(ii) to integrate the resulting equation for t0, to �nd t.

As to stage (i), we use eq. 3.5 and 3.6. Recall that the latter is:

T =
1

2

 
ds

dt

!2

; (4.56)

so that now using � as independent variable,

T =
1

2

 
ds

d�

!2

=t02: (4.57)

This implies that solving the energy conservation equation, eq. 4.51, for t0 yields

t0 =
1p

(2(E � V ))

ds

d�
(4.58)

51Arnold (1989: 246) joyously quotes Jacobi who says (in his Lectures on Dynamics, 1842-1843): `In

almost all textbooks, even the best, this principle is presented so that it is impossible to understand'.

Arnold continues ironically: `I do not choose to break with tradition. A very interesting \proof"

of [the principle of least action] is in Section 44 of the mechanics textbook of Landau and Lifshitz.'

Arnold's own exposition (1989: 242-248) is of course admirably lucid and rigorous. But it is abstract

and hard, not least because it is cast within Hamiltonian mechanics.
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Also eq. 4.57 implies that the principle of least action, eq. 4.54, can be written as:

Æ
Z p

(2(E � V ))
ds

d�
d� = 0 (4.59)

This form is known as Jacobi's principle. It determines the path in con�guration space

without regard to the passage of time. This completes stage (i).

NB: Though one might write Jacobi's principle as

Æ
Z p

(2(E � V ))ds = 0; (4.60)

beware that ds is not an exact di�erential, and is not the di�erential of the independent

variable in eq. 4.59. Some parameter � must be chosen as the independent variable,

e.g. one of the qj, say qn, so that all the other qj are functions of qn: which clearly

reduces the problem from n to n� 1 degrees of freedom.

As to stage (ii), one integrates eq. 4.58 to get t as a function of � . This determines

how the motion through con�guration space occurs in time.

I end this Subsection with four comments on the principle of least action. The �rst

two are technical; but since they connect the principle of least action to the geometry

of con�guration space, they illustrate the moral (Reformulate), and the merit (Wider)

of (Scheme). The third and fourth comments will return us to Section 4.1.1's treatment

of the principle of least action.

(1): The analogy with optics:|

For a single particle, the line-element ds is just ordinary spatial distance (in arbitrary

curvilinear coordinates). Jacobi's principle is then very like Fermat's principle of least

time in geometric optics (mentioned in Paragraph 3.3.2.B, (2)), which determines the

optical path by minimizing the integralZ
n ds (4.61)

where n is the refractive index, which can change from point to point (cf.
p
(2(E�V ))).

This optico-mechanical analogy is deep and important: it plays a role both in Hamilton-

Jacobi theory and in quantum theory. (Butter�eld (2004c: Sections 7-9) gives details

and references.) But here I just note that the analogy concerns the path, not how the

motion occurs in time|which is di�erent in the two cases.

(2): Geodesics:|

Eq. 4.60 suggests that we think of Jacobi's principle as determining the path in con-

�guration space as the shortest path (geodesic), according to a new line-element, d�2

say, de�ned by

d�2 := (E � V )ds2 (4.62)

so that Jacobi's principle is the statement that the motion minimizes the integral
R
d�.

Besides, if the system is free i.e. V = 0, d�2 and ds2 just di�er by a multiplicative

constant E, and Jacobi's principle now says that the system travels a geodesic of the
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original line-element ds2 de�ned in terms of T . Furthermore, the conservation of energy

and

E = T =
1

2

 
ds

dt

!2

(4.63)

implies that the representative point moves at constant velocity in con�guration space.

(3): Euler's and Lagrange's practice:|

We have deduced the principle of least action, eq. 4.54, for holonomic conservative

scleronomous systems, as an example of Routhian reduction applied to Hamilton's

Principle. But now let us ask how Euler and Lagrange wrote down the principle of

least action, and got the right Euler-Lagrange equations for such systems, without

starting from Hamilton's Principle. The short answer is that Lagrange et al. regard

the energy conservation equation eq. 4.58 as an auxiliary condition, and treat it by

Lagrange's �-method.

Thus recall that in essence, Jacobi's principle involves two steps:|

(A): In the kinetic energy, replace di�erentiation with respect to t by di�erentiation

with respect to the parameter � :

T 0 =
1

2
� aikq

0

iq
0

k = T t02 : (4.64)

(B): Minimize the action integral (cf. eq. 4.54)

2

Z
T 0

t0
d� (4.65)

after eliminating t0 by using the energy relation (cf. eq. 4.58)

T 0

t02
+ V = E: (4.66)

Lagrange instead proposes to treat eq. 4.66 by his �-method. So his integral to be

extremized is Z "
2
T 0

t0
+ �

 
T 0

t02
+ V

!#
d�: (4.67)

Since t0 is one of our variables, we can �nd � by minimizing with respect to t0, getting

�2T 0

t02
� 2�T 0

t02
= 0; giving � = �t0: (4.68)

Then the integral becomes

Z  
T 0

t02
� V

!
t0 d� =

Z
(T � V )t0 d�: (4.69)

But now that the variational problem is a free problem, i.e. has no auxiliary conditions,

there is no reason not to use t as the independent variable. Doing so, we getZ
(T � V ) dt: (4.70)
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Thus we are led back to Hamilton's Principle; and thus Lagrange et al. could obtain the

usual, correct, equations of motion for holonomic conservative scleronomous systems

from their principle of least action.

(4): Two kinds of variation, revisited:|

In Section 4.1.1, I introduced the principle of least action using a notion of variation

di�erent from the type I have considered throughout this Subsection. There I used

a variation in which the energy H is conserved, so that the transit time varies from

one path to another. Indeed, the principle of least action is often discussed using this

kind of variation. But I shall not go into details, nor relate this notion of variation to

comment (3) above; (for details, cf. Goldstein et al (2002: 356-362) or Arnold (1989:

242-248)).

4.7 Noether's theorem

4.7.1 Preamble: a modest plan

Any discussion of symmetry in Lagrangian mechanics must include a treatment of

\Noether's theorem". The scare quotes are to indicate that there is more than one

Noether's theorem. Quite apart from Noether's work in other branches of mathematics,

her paper (1918) on symmetries and conservation principles (i.e. constants of the

motion) in Lagrangian theories has several theorems. I will be concerned only with

applying her �rst theorem to �nite-dimensional systems. In short: it provides, for any

symmetry of a system's Lagrangian (a notion I will de�ne), a constant of the motion;

the constant is called the `momentum conjugate to the symmetry'.

I stress at the outset that the great majority of subsequent applications and com-

mentaries (also for her other theorems, besides her �rst) are concerned with versions

of the theorems for in�nite (i.e. continuous) systems. In fact, the context of Noether's

investigation was contemporary debate about how to understand conservation prin-

ciples and symmetries in the \ultimate continuous system", viz. gravitating matter

as described by Einstein's general relativity. This theory can be given a Lagrangian

formulation: that is, the equations of motion, i.e. Einstein's �eld equations, can be

deduced from a Hamilton's Principle with an appropriate Lagrangian. The contem-

porary debate was especially about the conservation of energy and the principle of

general covariance (aka: di�eomorphism invariance). General covariance prompts one

to consider how a variational principle transforms under spacetime coordinate trans-

formations that are arbitrary, in particular varying from point to point. This leads to

the idea of \local" symmetries, which since Noether's time has been immensely fruitful

in both classical and quantum physics.52

So I agree that from the perspective of Noether's work, and its enormous later

52An excellent anthology of philosophical essays about symmetry is Brading and Castellani (2003):

apart from its papers speci�cally about Noether's theorem, the papers by Wallace, Belot and Earman

(2003) are closest to this paper's concerns.
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development, this Section's application of the �rst theorem to �nite-dimensional sys-

tems is, as they say, trivial. Furthermore, this application is easily understood, without

having to adopt that perspective, or even having to consider in�nite systems. In other

words: its statement and proof are natural, and simple, enough that no doubt several

nineteenth century masters of mechanics, like Hamilton, Jacobi and Poincar�e, could

recognize it in their own work|allowing of course for adjustments to modern language.

In fact, versions of it for the Galilei group of Newtonian mechanics and the Lorentz

group of special relativity were published a few years before Noether's paper; (Brading

and Brown (2003: 90); for details, cf. Kastrup (1987)).53

Nevertheless, for this paper's purposes, it is worth expounding the �nite-system

version of Noether's �rst theorem. For it generalizes Section 4.5's result about cyclic

coordinates (and so the elementary theorems of the conservation of momentum, angular

momentum and energy which that result encompasses). There is also a pedagogic

reason for expounding it. Many books (e.g. Goldstein et al 2002: 589f.) concentrate on

the versions of Noether's theorems for in�nite systems: for the reasons given above, that

is understandable|but it can unwittingly give the impression that there is no version

for �nite systems. (Noether's theorem also has an important analogue in Hamiltonian

mechanics.)

I should also give a warning at the outset about the sense in which Noether's the-

orem generalizes Section 4.5's result about cyclic coordinates. I said at the very end

of Section 4.5 that (unlike Routhian reduction) the theorem does not assume we have

identi�ed cyclic coordinates.

Indeed so: but every symmetry in the Noether sense will arise from a cyclic coordi-

nate in some system of generalized coordinates. In fact, this will follow from the Basic

Theorem (what Arnold dubs the \recti�cation theorem') of the theory of ordinary dif-

ferential equations; cf. Paragraph 2.1.3.A (i).

So the underlying point here will be the important one we have seen before. Namely:

the Basic Theorem secures the existence of a coordinate system in which \locally, the

problem is completely solved": i.e., n �rst-order ordinary di�erential equations have,

locally, n�1 functionally independent �rst integrals. But that does not mean it is easy

to �nd the coordinate system!

In other words: as I emphasised already in Section 2.1.4: analytical mechanics

provides no \algorithmic" methods for �nding the best coordinate systems for solving

problems. In particular, Noether's theorem, for all its power, will not be a magic device

for �nding cyclic coordinates!

My own exposition of the theorem is a leisurely pedagogic expansion of Arnold's

concise geometric proof (1989: 88-89).54 This will involve, following Arnold, two main

53Here again, `versions of it' needs scare-quotes. For in what follows, I shall be more limited than

these proofs. I limit myself, as I did in Paragraph 3.3.2.E, both to time-independent Lagrangians and

to time-independent transformations: so my discussion does not encompass boosts.
54Other brief expositions of Noether's theorem for �nite-dimensional systems include: Desloge (1982:

581-586), Lanczos (1986: 401-405: emphasizing the variational perspective) and Johns (2005: Chapter

13).
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limitations of scope:

(i): I limit myself, as I did in Paragraph 3.3.2.E, both to time-independent La-

grangians and to time-independent transformations. Formally, this will mean L is a

scalar function on the 2n-dimensional velocity phase space (aka: tangent bundle) TQ

coordinatized by q; _q: L : TQ! IR.

(ii): I will take a symmetry of L (or L's being invariant) to require that L be the

very same. That is: a symmetry does not allow the addition to L of the time-derivative

of a function G(q) of the coordinates q|even though, as discussed in Paragraph 3.3.2.D

(and Section 4.2), such a time-derivative makes no di�erence to the Lagrange (Euler-

Lagrange) equations.

So my aims are modest. Apart from pedagogically expanding Arnold's proof, my

only addition will be to contrast with (ii)'s notion of symmetry, another notion. Al-

though this notion is not needed for my statement and proof of Noether's theorem,

it is so important to this paper's theme of general schemes for integrating di�erential

equations (from Section 2.1.1 onwards!) that I must mention it briey.

This is the notion of a symmetry of the set of solutions of a di�erential equation:

(aka: a dynamical symmetry). This notion applies to all sorts of di�erential equations,

and systems of them; not just to di�erential equations of this paper's sort|i.e. derived,

or derivable, from an variational principle. In short, this sort of symmetry is a map that

sends any solution of the given di�erential equation (in e�ect: a dynamically possible

history of the system|a curve in the state-space of the theory) to some other solution.

Finding such symmetries, and groups of them, is a central part of the modern theory

of integration of di�erential equations (both ordinary and partial). (This notion, and

the theory based on it, were pioneered by Lie.)

It will turn out that broadly speaking, this notion is more general than that of a

symmetry of L (the notion needed for Noether's theorem). Not only does it apply to

many other sorts of di�erential equation than the Euler-Lagrange equations. Also, for

the latter equations: a symmetry of L is (with one caveat) a symmetry of the solutions,

i.e. a dynamical symmetry|but the converse is false.

An excellent account of this modern integration theory, covering both ordinary and

partial di�erential equations, is given by Olver (2000). He also covers the Lagrangian

case (Chapter 5 onwards), and gives many historical details about Lie's and others'

contributions.

The plan is as follows. Starting from cyclic coordinates, I �rst develop the idea of

the Lagrangian being invariant under a transformation (Section 4.7.2). This leads to

de�ning:

(i): a symmetry as a vector �eld (on con�guration space) that generates a family

of transformations under which the Lagrangian is invariant (Section 4.7.3);

(ii): the momentum conjugate to a vector �eld, as (roughly) the rate of change of

the Lagrangian with respect to the _qs in the direction of the vector �eld.

Together, these de�nitions lead directly to Noether's theorem (Section 4.7.5): that

the momentum conjugate to a symmetry is a constant of the motion. One might guess,

in the light of the rough de�nitions just given in (i) and (ii), that proving this statement
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promises to be easy work. And so it is: after all the stage-setting, the proof in Section

4.7.5 will be a one-liner application of Lagrange's equations.55

4.7.2 From cyclic coordinates to the invariance of the Lagrangian

I begin by restating Section 4.5's result that the generalized momentum conjugate to

a cyclic coordinate is constant, in terms of coordinate transformations. This leads

to the correspondence between passive and active transformations, and between their

associated de�nitions of `invariance'.

The passive-active correspondence is of course entirely general: it applies to any

space on which invertible di�erentiable coordinate transformations are de�ned. But it

is a notoriously muddling subject and so worth expounding slowly! And although my

exposition will be in the context of cyclic coordinates in Lagrangian mechanics, it will

be clear that the correspondence is general.

So let qn be cyclic, and consider a coordinate transformation q ! q0 that just shifts

the cyclic coordinate qn by an amount �:

q0i := qi + �Æin _q0i = _qi : (4.71)

So to write the Lagrangian in terms of the new coordinates, we substitute, using the

reverse transformation, i.e.

L�(q
0; _q0; t) = L(q(q0; t); _q(q0; t); t) : (4.72)

That is: the Lagrangian is a scalar function on the space with points labelled (q; _q; t).

(In Paragraph 3.3.2.B, we called this the `extended velocity phase space', or without the

time argument, just `velocity phase space'; in the geometric description of Paragraph

3.3.2.E, we called it the `tangent bundle'.) It is just that we use L� to label its functional

form in the new coordinate system.

Now we let � vary, so that we have a one-parameter family of transformations.

Di�erentiating L� with respect to �, we get using the chain rule

@L�

@�
= �i

@L

@qi

@qi

@�
+ �i

@L

@ _qi

@ _qi

@�
= �i �

@L

@qi
Æin = � @L

@qn
: (4.73)

Now we use the fact qn is cyclic. This implies that eq. 4.73 is equal to zero:

@L�

@�
� � @L

@qn
= 0 ; (4.74)

and thus that the Lagrangian has the same functional form in the new coordinates as

in the old ones: which we can express as

L�(q; _q; t) = L(q; _q; t) ; or equivalently L�(q
0; _q0; t) = L(q0; _q0; t) : (4.75)

55If in (ii), the conjugate momentum had been de�ned simply as the rate of change of the Lagrangian

in the direction of the vector �eld, then of course the theorem would be truly trivial: it would not

require Lagrange's equations.
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So far we have viewed the coordinate transformation in the usual way, as a passive

transformation: cf. the comment after eq. 4.72. But for Noether's theorem, we need

to express these same ideas in terms of active transformations. So I will now describe

the usual correspondence between passive and active transformations, in the context

of the velocity phase space.

(Again, I stress that my discussion assumes time-independent Lagrangians and

transformations; so I will not work with extended velocity phase space. But some of

the following discussion could be straightforwardly generalized to that context. For

example, the vector �elds X that in the next Subsection will represent symmetries

would become time-dependent vector �elds, so that their rates of change pick up a

partial time-derivative @X
@t
.)

I will temporarily label the velocity phase space S (for `space'). And let us write s

for a point (however coordinatized) in S, and indicate scalar functions on S (however

expressed in terms of coordinates) by a bar. So the Lagrangian is a scalar function
�L : s 2 S 7! �L(s) 2 IR.

Furthermore, in this Subsection's discussion of the corresponding active transforma-

tions, the distinction between the qs and the _qs will play no role. As in the discussion

above, we will start with a passive coordinate transformation on S (both qs and _qs)

that is induced by a passive coordinate transformation on just the con�guration space

(just qs); and then we will de�ne a corresponding active transformation. But since

the q � _q-distinction plays no role|the _qs just \carry along" throughout|it will be

clearest to temporarily drop the _qs from the notation. So in this Subsection, when I

talk of a passive q ! q0 coordinate transformation inducing an active one, you can

think indi�erently of there being:

either (i) n qs on con�guration space, with the discussion \lifting" to the 2n-

dimensional S,

or (ii) 2n qs on S, so that the q ! q0 transformation need not be induced by a

transformation on just the n-dimensional con�guration space.

In the next Subsection, the q � _q-distinction will of course come back into play.

A passive coordinate transformation q ! q0 de�nes an active transformation, � say,

as follows. We will allow the coordinate transformation to be local, i.e. de�ned only

on a patch (to be precise: an open subset) U of S. Then � : U ! U is de�ned by the

rule that for any s 2 U the coordinates of �(s) in the q0-system are to be the same

numbers as the coordinates of s in the q-system; that is

q0i(�(s)) = qi(s) for all i : (4.76)

This de�nition implies that �'s functional form in the q0-system is the transformation

q0 ! q, i.e. the inverse of our original coordinate transformation. That is: � : s 7! �(s)

is expressed in the q0-system by

q0(s) 7! q0(�(s)) = q(s) : (4.77)

On the other hand, a scalar function �L : U ! IR can be \dragged along" by

composition with �. That is, we de�ne �L Æ � : s 2 U 7! �L(�(s)) 2 IR.
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Putting these points together, we deduce that the functional forms of �L and �L Æ �,
in the coordinate systems q and q0 respectively, match.

That is: let the functional form of �L in the q-system be L: so �L(s) is calculated

in the q-system as L(q(s)). But eq. 4.77 implies that the functional form of �L Æ � in

the q0-system is q0 ! q ! L(q): which is the same. That is, this functional form is

also L(q(s)) � L(q(q0(s))). (The occurrence of q(q0) here corresponds to the use of the

inverse coordinate transformation under the passive view; cf. eq. 4.72.)

Furthermore, we could undertake this construction in reverse. That is, we could

instead start with di�erentiable invertible active maps � on S, and thereby de�ne

coordinate transformations, with the property that a scalar function and its \drag-

along" have the same functional expression in the two coordinate systems. (Exercise!

Fill in these details; and �ll in the details of the above discussion, so as to respect the

q � _q distinction.)

This passive-active correspondence obviously applies to any space on which invert-

ible di�erentiable coordinate transformations are de�ned. For our construction of the

corresponding active transformation made no appeal to the three special features of

Lagrangian mechanics and cyclic coordinates that we used in our passive discussion,

eq. 4.71 to 4.75. Namely, the three features:

(i): the q � _q distinction on S;

(ii): the use of a translation in just one coordinate to give a one-parameter family

of transformations, labelled by �;

(iii): the idea of a cyclic coordinate and L being invariant.

So we will now re-introduce these features. We begin with the most important one:

(iii), invariance.

(We will re-introduce feature (i), the q� _q distinction, in the next Subsection. And

it will be clear that the main role of (ii), in both passive and active views, is to provide

a di�erential notion of invariance; cf. how eq. 4.74 is the di�erential form of eq. 4.75.)

We saw that on the passive view, the invariance of the Lagrangian means that it

has the same functional form in both coordinate systems; eq. 4.75.

On the active view, it is natural to de�ne: �L is invariant under the map � : U ! U

i� �L and �L Æ � are the same scalar function U ! IR.

But we also saw that on the active view, now replacing � by � in the obvious way:

for any �L and its drag-along �L�, the functional forms in the q-system and q0-system

respectively, match. This implies that �L being invariant means that �L itself has the

same functional form in the q-system and q0-system.

So to sum up: the correspondence between passive and active (local) transforma-

tions implies an equivalence between two de�nitions of what it is for a scalar such as

the Lagrangian to be invariant|where this invariance is understood as above, and not

just as being a scalar on the space S! Namely: that L have the same functional form

in two coordinate systems, and that it be identical with its \drag-along".

90



4.7.3 Vector �elds and symmetries|variational and dynamical

The last Subsection used, albeit briey, the idea of a one-parameter family of trans-

formations on the n-dimensional con�guration space Q, and how it \lifts" to the 2n-

dimensional velocity phase space that I labelled S.

I now need to state these ideas more carefully; and especially, to be explicit about

the \di�erential version" of such a family of transformations. This is the idea of a

vector �eld on Q. Here my discussion borders on the relatively abstract ideas of mod-

ern geometry: ideas which this paper has eschewed, apart from the geometric interlude

Paragraph 3.3.2.E. But fortunately, in proving Noether's theorem I will be able to make

do with an elementary notion of a vector �eld. More speci�cally, I need to expound

four topics:

(1): the idea of a vector �eld on Q;

(2): how such vector �elds \lift" to velocity phase space;

(3): the de�nition of a (variational) symmetry;

(4): the contrast between (3) and the idea of symmetry of the equations of motion

(aka: a dynamical symmetry). Warning: the material in (4) will not be needed for

Section 4.7.5.

(1): Vector �elds on Q :|-

The intuitive idea of a vector �eld on con�guration space Q is that it is an assignment

to each point of the space, of a in�nitesimal displacement, pointing to a nearby point

in the space. The assignment is to be continuous in the sense that close points get

similar in�nitesimal displacements assigned to them, the displacements tending to each

other as the points get closer. For present purposes, we will furthermore require that a

vector �eld be di�erentiable; (this is de�ned along similar lines to its being continuous).

In this way, it is intuitively clear that a di�erentiable vector �eld on an n-dimensional

con�guration space is represented in a coordinate system q = (q1; : : : ; qn) by n �rst-

order ordinary di�erential equations

dqi

d�
= fi(q1; : : : ; qn) : (4.78)

At each point (q1; : : : ; qn), the assigned in�nitesimal displacement has a component in

the qi direction equal to fi(q1; : : : ; qn)d�.

Thus we return to the basic ideas of solving ordinary di�erential equations, ex-

pounded in Paragraph 2.1.3.A, (1). In particular, a vector �eld has through every

point a local integral curve (solution of the di�erential equations). In this way, a vec-

tor �eld generates a one-parameter family of active transformations: that is, passage

along the vector �eld's integral curves, by a varying parameter-di�erence �, is such a

family of transformations. The vector �eld is called the in�nitesimal generator of the

family. It is in this sense that a vector �eld is the \di�erential version" of such a family.

(Using the last Subsection's passive-active correspondence, one could de�ne what it is

for a vector �eld to generate a one-parameter family of coordinate transformations.

But I will not need this idea: exercise to write it down!)
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I turn to a more precise de�nition of a vector �eld on Q: informal, by the standards

of modern geometry, but adequate for present purposes. The idea of the de�nition

is that a vector �eld X on Q is to assign the same small displacements irrespective

of a choice of coordinate system on Q. So �rst we recall that the expressions in two

coordinate systems q and q0 of a small displacement are related by

Æq0i = �j

@q0i
@qj

Æqj +O(�2) : (4.79)

We therefore de�ne: a vector �eld X on Q is an assignment to each coordinate system q

on Q, of a set of n real-valued functions Xi(q), with the di�erent sets meshing according

to the transformation law (for the coordinate transformation q ! q0):

X 0

i = �j

@q0i
@qj

Xj: (4.80)

The functions Xi(q) are called the components of the vector �eld in the coordinate

system q.

(2): Vector �elds on TQ; lifting �elds from Q to TQ:|-

Now consider the velocity phase space, the 2n-dimensional space of con�gurations

and generalized velocities taken together. This has a natural structure induced by Q,

essentially because a coordinate system q on Q, de�nes a corresponding coordinate

system q; _q on the velocity phase space. Indeed, the velocity phase space is called the

tangent bundle of Q', written TQ|where T stands, not for `time', but for `tangent'.

The reason for `tangent' lies in modern geometry; (cf. Paragraph 3.3.2.E for more

detail). But in short, the reason is as follows.

Consider any smooth curve in con�guration space, � : I � IR! Q, with coordinate

expression in the q-system t 2 I 7! q(�(t)) � q(t) = qi(t). Mathematically, t is just

the parameter of the curve �: but the physical interpretation is of course that � is a

possible motion, and t is the time, so that if we di�erentiate the qi(t) the dot _ stands

for time, and the n functions _qi(t) together de�ne the generalized velocity vector, for

each time t. Besides: for each t, the values _qi(t) of these n functions together form the

tangent vector to the curve � where it passes through the point in Q with coordinates

q(t) � q(�(t)). We think of this tangent vector as attached to the space Q, at the

point.

It will be helpful to have a notation for this point in Q, independent of its coordinate

expression (here, q(t)). Let us write it as x 2 Q. Then: considering all the various

possible curves � that pass through x (with various di�erent directions and speeds),

we get all the various possible generalized velocity vectors. They naturally form a

n-dimensional vector space, which we call the tangent space Tx attached to x 2 Q.

Then the set (space) TQ is de�ned by saying that an element (point) of TQ is

a pair, comprising a point x 2 Q together with a vector in Tx. So: adopting the

coordinate system q on (a patch of) Q, there is a corresponding coordinate system q; _q

on (a corresponding patch of) TQ.
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TQ is a \smooth space"|formally, a di�erential manifold|so that we can de�ne

vector �elds on it, on analogy with (1) above. In full generality, a vector �eld on TQ

will be an assignment to any coordinate system �� = (�1; : : : ; �2n) on TQ of a set of 2n

real-valued functions X�(�), with the di�erent sets meshing according to the analogue

of eq. 4.80, i.e. for a coordinate transformation � ! � 0:

X 0

� = �2n
�=1

@� 0�
@��

X�: (4.81)

But we will be interested only in vector �elds on TQ that \mesh" with the structure

of TQ as a tangent bundle, i.e. with vector �elds on TQ that are induced by vector

�elds on Q|in the following natural way.

This induction has two ingredient ideas.

First, any curve in con�guration space Q de�nes a corresponding curve in TQ|

intuitively, because the functions qi(t) de�ne the functions _qi(t). More formally: given

any curve in con�guration space, � : I � IR ! Q, with coordinate expression in the

q-system t 2 I 7! q(�(t)) � q(t) = qi(t), we de�ne its extension to TQ to be the curve

� : I � IR! TQ given in the corresponding coordinates by qi(t); _qi(t).

Second, any vector �eld X on Q generates displacements in any possible state of

motion, represented by a curve in Q with coordinate expression qi = qi(t). (So here t

is the parameter of the state of motion, not of the integral curves of X.) Namely: for

a given value of the parameter �, the displaced state of motion is represented by the

curve in Q

qi(t) + �Xi(qi(t)) : (4.82)

Putting these ingredients together: we �rst displace a curve within Q, and then

extend the result to TQ. Namely, the extension to TQ of the (curve representing)

the displaced state of motion is given by the 2n functions, in two groups each of n

functions, for the (q; _q) coordinate system

qi(t) + �Xi(qi(t)) and _qi(t) + �Yi(qi(t); _qi) ; (4.83)

where Y is de�ned to be the vector �eld on TQ that is the derivative along the original

state of motion of X. That is:

Yi(q; _q) :=
dXi

dt
= �j

@Xi

@qj
_qj: (4.84)

In this sense, displacements by a vector �eld within Q can be \lifted" to TQ. The

vector �eld X on Q lifts to TQ as (X; dX
dt
); i.e. it lifts to the vector �eld that sends a

point (qi; _qi) 2 TQ to (qi + �Xi; _qi + �dXi

dt
).56

56I have discussed this in terms of some system (q; _q) of coordinates. But the de�nitions of extensions

and displacements are in fact coordinate-independent. Besides, one can show that the operations of

displacing a curve within Q, and extending it to TQ, commute to �rst order in �: the result is the

same for either order of the operations.
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(3): De�nition of `symmetry' :|-

To de�ne symmetry, I begin with the integral notion and then give the di�erential

notion. I will also simplify, as I have often done, by speaking \globally, not locally",

i.e. by writing as if the relevant scalar functions, vector �elds etc. are de�ned on all of

Q or TQ: of course, they need not be.

We return to the idea at the end of Section 4.7.2: the idea of the Lagrangian L being

invariant under an active transformation �, i.e. equal to its drag-along L Æ �. (So here

L is the coordinate-independent scalar function on TQ, not a functional form. But we

could use Section 4.7.2 to recast what follows in terms of a passive notion of symmetry

as sameness of L's functional form in di�erent coordinate systems: exercise!)

Now we consider an entire one-parameter family of (active) transformations �s :

s 2 I � IR. We de�ne the family to be a symmetry of L if the Lagrangian is invariant

under the transformations, i.e. L = L Æ �s. (But see (4) below for why `variational

symmetry' is a better word for this notion.)

For the di�erential notion of symmetry, we use the idea of a vector �eld. We de�ne

a vector �eld X to be a symmetry of L if the Lagrangian is invariant, up to �rst-

order in �, under the displacements generated by X. (But again, see (4) below for

why `variational symmetry' is a better word.) More precisely, and now allowing for a

time-dependent Lagrangian (so that for each time t, L is a scalar function on TQ): we

say X is a symmetry i�

L(qi + �Xi; _qi + �Yi; t) = L(qi; _qi; t) + O(�2) with Yi = �j

@Xi

@qj
_qj : (4.85)

An equivalent de�nition is got by explicitly setting the �rst derivative with respect to

� to zero. That is: X is a symmetry i�

�i Xi

@L

@qi
+ �i Yi

@L

@ _qi
= 0 with Yi = �j

@Xi

@qj
_qj (4.86)

(4): A Contrast: symmetries of the equations of motion :|-

Warning:| As I said at the end of Section 4.7.1, the material here is not needed

for Section 4.7.5's presentation of Noether's theorem. But the notion of a symmetry

of equations of motion (whether Euler-Lagrange or not) is so important that I must

mention it, though only to contrast it with (3)'s notion.

The general de�nition is roughly as follows. Given any system of di�erential equa-

tions, E say, a (dynamical) symmetry of the system is an (active) transformation � on

the system E 's space of both independent variables, xj say, and dependent variables

yi say, such that any solution of E , yi = fi(xj) say, is carried to another solution. For

a precise de�nition, cf. Olver (2000: Def. 2.23, p. 93), and his ensuing discussion of

the induced action (called `prolongation') of the transformation � on the spaces of (in

general, partial) derivatives of the y's with respect to the xs (called `jet spaces').

As I said in Section 4.7.1, groups of symmetries in this sense play a central role

in the modern theory of di�erential equations: not just in �nding new solutions, once
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given a solution, but also in integrating the equations. For some main theorems stating

criteria (in terms of prolongations) for groups of symmetries, cf. Olver (2000: Theorem

2.27, p. 100, Theorem 2.36, p. 110, Theorem 2.71, p. 161).

But for present purposes, it is enough to state the rough idea of a one-parameter

group of dynamical symmetries (without details about prolongations!) for the La-

grangian equations of motion in the usual familiar form, eq. 3.39 or 4.8. In this simple

case, there is just one independent variable x := t, so that we are considering ordinary,

not partial, di�erential equations; and there are n dependent variables yi := qi(t).

Furthermore, following the discussion in Section 3, these equations mean that the

constraints are holonomic, scleronomous and ideal, and the system is monogenic with a

velocity-independent and time-independent work-function. As I have often emphasised

(especially Sections 4.4 and 4.6), this means that the system obeys the conservation of

energy, and time is a cyclic coordinate. And this means that we can de�ne dynamical

symmetries � in terms of the familiar active transformations on the con�guration space,

� : Q ! Q, discussed since Section 4.7.2. In e�ect, we de�ne a � by just adjoining

to any such � : Q ! Q the identity map on the time variable i : t 2 IR 7! t. (More

formally: � : (q; t) 2 Q� IR 7! (�(q); t) 2 Q� IR.)

Then we de�ne in the usual way what it is for a one-parameter family of such maps

�s : s 2 I � IR to be a one-parameter group of dynamical symmetries (for Lagrange's

equations eq. 3.39): namely, if any solution curve q(t) (or equivalently: its extension

q(t); _q(t) to TQ) of the Lagrange equations is carried by each �s to another solution

curve, with the �s for di�erent s composing in the obvious way.

And �nally: we also de�ne (in a manner corresponding to (3)'s discussion) a di�er-

ential, as against integral, notion of dynamical symmetry. Namely, we say a vector �eld

X is a dynamical symmetry if it is the in�nitesimal generator of such a one-parameter

family �s.

For us, the important point is that this notion of a dynamical symmetry is di�erent

from (3)'s notion of a variational symmetry. Hence it is best to use di�erent words.57

Many discussions of Noether's theorem only mention (3)'s notion, variational sym-

metry. Arnold himself just says that any variational symmetry is a dynamical sym-

metry, adding in a footnote that several textbooks mistakenly assert the converse

implication|but he does not give a counterexample (1989: 88). But in fact there is a

subtlety also about the �rst implication, from variational symmetry to dynamical sym-

metry. Fortunately, the same simple example will serve both as a counterexample to

the converse implication, and to show the subtlety about the �rst implication. Besides,

it is an example we have seen before: viz., the two-dimensional harmonic oscillator with

a single frequency (Paragraph 3.3.2.D).58

57Since the Lagrangian L is especially associated with variational principles, while the dynamics is

given by equations of motion, calling (3)'s notion `variational symmetry', and the new notion `dynam-

ical symmetry' is a good and widespread usage. But beware: it is not universal. Many treatments

call (3)'s notion `dynamical symmetry'|understandably enough in so far as, for the systems being

considered, L determines the dynamics.
58All the material from here to the end of this Subsection is drawn from Brown and Holland (2004a);
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Recall from eq. 3.47 and eq. 3.48 that the usual and unfamiliar Lagrangians are

respectively (with cartesian coordinates written as qs):

L1 =
1

2

h
_q21 + _q22 � !2(q21 + q22)

i
; L2 = _q1 _q2 � !2q1q2 : (4.87)

These inequivalent Lagrangians give the same Lagrange equations eq. 3.39|or using

Hamilton's Principle, the same Euler-Lagrange equations: viz.

�qi + !2qi = 0 ; i = 1; 2: (4.88)

The rotations in the plane are of course a variational symmetry of L1, and a dynamical

symmetry of eq. 4.88. But they are not a variational symmetry of L2. So a dynamical

symmetry need not be a variational one. Besides, eq.s 4.87 and 4.88 contain another

example to the same e�ect. Namely, the \squeeze" transformations

q01 := e�q1 ; q
0

2 := e��q2 (4.89)

are a dynamical symmetry of eq. 4.88, but not a variational symmetry of L1. So again:

a dynamical symmetry need not be a variational one.59

I turn to the �rst implication: that every variational symmetry is a dynamical

symmetry. This is true: general and abstract proofs (applying also to continuous

systems i.e. �eld theories) can be found in Olver (2000: theorem 4.14, p. 255; theorem

4.34, p. 278; theorem 5.53, p. 332).

But beware of a condition of the theorem. It requires that all the variables q (for

continuous systems: all the �elds �) be subject to Hamilton's Principle. The need for

this condition is shown by rotations in the plane, which are a variational symmetry of

the harmonic oscillator's familiar Lagrangian L1. But it is easy to show that such a

rotation is a dynamical symmetry of one of Euler-Lagrange equations, say the equation

for the variable q1
�q1 + !2q1 = 0 ; (4.90)

only if the corresponding Euler-Lagrange equation holds for q2.

cf. also their (2004). Many thanks to Harvey Brown for explaining these matters. The present use of

the harmonic oscillator example also occurs in Morandi et al (1990: 203-204).
59In the light of this, you might ask about a more restricted implication: viz. must every dynamical

symmetry of a set of equations of motion be a variational symmetry of some or other Lagrangian

that yields the given equations as Euler-Lagrange equations? Again, the answer is No for the simple

reason that there are many (sets of) equations of motion that are not Euler-Lagrange equations of

any Lagrangian, and yet have dynamical symmetries in the sense discussed, i.e. transformations that

move solution curves to solution curves.

Wigner (1954) gives an example. The general question of under what conditions is a set of ordinary

di�erential equations the Euler-Lagrange equations of some Hamilton's Principle is called the inverse

problem of Lagrangian mechanics. It is a large subject, with a long history; cf. e.g. Santilli (1979),

Lopuszanski (1999).
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4.7.4 The conjugate momentum of a vector �eld

Now we de�ne the momentum conjugate to a vector �eld X to be the scalar function

on TQ:

pX : TQ! IR ; pX = �i Xi

@L

@ _qi
(4.91)

(For a time-dependent Lagrangian, pX would be a scalar function on TQ� IR, with IR

representing time.)

We shall see in examples below that this de�nition generalizes in an appropriate

way our previous de�nition of the momentum conjugate to a coordinate q, in Section

4.4.

For the moment, I just note that it is an improvement in the sense that, as I said

in Section 4.5.1 (footnote 49), the momentum conjugate to a coordinate q depends

on the choice made for the other coordinates. But the momentum pX conjugate to

a symmetry X is independent of the coordinates chosen. I will (i) explain why, in

intuitive terms (expanding Arnold 1989: 89); and then (ii) give a proof. Warning:|

(i) and (ii) are not needed for the statement and proof of Noether's theorem in Section

4.7.5.

(i): This independence is suggested by the de�nition of pX . For think of how in

elementary calculus the rate of change (directional derivative) of a function f : IR3 ! IR

along a line � : t 7! �(t) 2 IR3 is a coordinate-independent notion; and it is given by

contracting the gradient of f with the line's tangent vector, like eq. 4.91. That is:

Taking cartesian coordinates, so that the tangent vector of the line is (dx1
dt
; dx2

dt
; dx3

dt
),

the directional derivative of f is given by

df

dt
= �i

dxi

dt

@f

@xi
: (4.92)

Then on analogy with the case in elementary calculus, we have: pX as de�ned by eq.

4.91 is given by contracting the \gradient of L with respect to the _qs" with the vector

X.

Arnold (1989: 89) makes much the same point in terms of:

(i) the one-parameter family of transformations generated by X, call it �s with

s = 0 corresponding to the identity at a point q 2 Q;

(ii) the idea introduced in (2) of Section 4.7.3, that the various possible velocity

vectors _q form the tangent space Tq at q 2 Q.

Thus Arnold says pX is the rate of change of L(q; _q) when the vector _q `varies inside

the tangent space Tq with velocity d
ds
js=0 �s(q)'.

(ii) To prove independence, we �rst apply the chain-rule to L = L(q0(q); _q0(q; _q))

and \cancellation of the dots" (i.e. eq. 3.30, but now between arbitrary coordinate

systems), to get:
@L

@ _qi
= �j

@L

@ _q0j

@ _q0j
@ _qi

= �j

@L

@ _q0j

@q0j
@qi

(4.93)
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Then using eq. 4.80, and relabelling i and j, we deduce:

p0X = �i X
0

i

@L

@ _q0i
= �ij Xj

@q0i
@qj

@L

@ _q0i
= �ij Xi

@q0j
@qi

@L

@ _q0j
= �i Xi

@L

@ _qi
� pX : (4.94)

Finally, I remark incidentally that in a geometric formulation of Lagrangian mechanics,

the coordinate-independence of pX becomes, unsurprisingly, a triviality. Namely: pX
is obviously the contraction of X with the canonical one-form

�L :=
@L

@ _qi
dqi : (4.95)

that we de�ned in eq. 3.51 of Paragraph 3.3.2.E (3).

4.7.5 Noether's theorem; and examples

Given just the de�nition of conjugate momentum, eq. 4.91, the proof of Noether's

theorem is immediate. (The interpretation and properties of this momentum, discussed

in the last Subsection, are not needed.) The theorem says:

If X is a (variational) symmetry of a system with Lagrangian L(q; v; t),

then X's conjugate momentum is a constant of the motion.

Proof: We just calculate the derivative of the momentum eq. 4.91 along the solution

curves in TQ, and apply the de�nitions of Yi eq. 4.84, and of symmetry eq. 4.86:

dp

dt
= �i

dXi

dt

@L

@ _qi
+ �i Xi

d

dt

 
@L

@ _qi

!
(4.96)

= �i Yi
@L

@ _qi
+ �i Xi

@L

@qi
= 0 :

All of which, though neat, is a bit abstract! So here are two examples, both of

which return us to examples we have already seen.

The �rst example is a shift in a cyclic coordinate qn: i.e. the case with which our

discussion of Noether's theorem began, in Section 4.7.2. So suppose qn is cyclic, and

de�ne a vector �eld X by

X1 = 0; : : : ; Xn�1 = 0; Xn = 1 : (4.97)

So the displacements generated by X are translations by an amount � in the qn-

direction. Then Yi :=
dXi

dt
vanishes, and the de�nition of (variational) symmetry eq.

4.86 reduces to
@L

@qn
= 0 (4.98)
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So since qn is assumed to be cyclic, X is a symmetry. And the momentum conjugate

to X, which Noether's theorem tells us is a constant of the motion, is the familiar one

pX := �i Xi

@L

@ _qi
=

@L

@ _qn
: (4.99)

Furthermore, as mentioned in this Section's Preamble, Paragraph 4.7.0, this example

is universal, in that it follows from the Basic Theorem about solutions of ordinary

di�erential equations (the `recti�cation theorem': Paragraph 2.3.1.A (i)) that every

symmetry X arises from a cyclic coordinate in some system of coordinates.

But for good measure, let us nevertheless look at our previous example, the angular

momentum of a free particle (Section 4.5.1), in the cartesian coordinate system, i.e. a

coordinate system without cyclic coordinates. So let q1 := x; q2 := y; q3 := z. Then a

small rotation about the x-axis

Æx = 0; Æy = ��z; Æz = �y (4.100)

corresponds to a vector �eld X with components

X1 = 0; X2 = �q3; X3 = q2 (4.101)

so that the Yi are

Y1 = 0; Y2 = � _q3; X3 = _q2 : (4.102)

For the Lagrangian

L =
1

2
m( _q21 + _q22 + _q23) (4.103)

X is a (variational) symmetry since the de�nition of symmetry eq. 4.86 now reduces

to

�i Xi

@L

@qi
+ �i Yi

@L

@ _qi
= � _q3

@L

@ _q2
+ _q2

@L

@ _q3
= 0 : (4.104)

So Noether's theorem them tells us that X's conjugate momentum

pX := �i Xi

@L

@ _qi
= X2

@L

@ _q2
+X3

@L

@ _q3
= �mz _y +my _z (4.105)

which is indeed the x-component of angular momentum.
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5 Envoi

Two of this paper's themes have been: praise of eighteenth century mechanics; and

criticism of conceiving physical theorizing as \modelling". So let me end by quoting

two passages concordant with those themes. My praise is summed up by Lanczos in

the Preface to his wise book:

[T]he author ... again and again ... experienced the extraordinary elation

of mind which accompanies a preoccupation with the basic principles and

methods of analytical mechanics. (Lanczos 1986: vii)

And as an antidote to elation! ... My criticism is illustrated by Truesdell, famous

not only as a distinguished mathematician and historian of mechanics, but also as an

acerbic polemicist against all manner of shallow and fashionable ideas:

Nowadays people who for their equations and other statements about na-

ture claim exact and eternal verity are usually dismissed as cranks or lu-

natics. Nevetheless, we lose something in this surrender to lawless uncer-

tainty: Now we must tolerate the youth who blurts out the �rst, untutored,

and uncritical thoughts that come into his head, calls them \my model" of

something, and supports them by �ve or ten pounds of paper he calls \my

results", gotten by applying his model to some numerical instances which

he has elaborated by use of the largest machine he could get hold of, and if

you say to him, \Your model violates NEWTON's laws", he replies \Oh, I

don't care about that, I tackle the physics directly, by computer."

(Truesdell 1987: 74; quoted by Papastavridis 2002: 817)
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