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Abstract

This paper gives a technically elementary treatment of some aspects of Hamilton-

Jacobi theory, especially in relation to the calculus of variations. The second half

of the paper describes the application to geometric optics, the optico-mechanical

analogy and the transition to quantum mechanics. Finally, I report recent work

of Holland providing a Hamiltonian formulation of the pilot-wave theory.
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Springer, 2004. (The Frontier Series: Monographs and Books on Frontiers of Modern

Physics)

`Dont worry, young man: in mathematics, none of us really understands any idea|we

just get used to them.'

John von Neumann, after explaining (no doubt very quickly!) the method of character-

istics (i.e. Hamilton-Jacobi theory) to a young physicist, as a way to solve his problem;

to which the physicist had replied `Thank you very much; but I'm afraid I still don't

understand this method.'
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1 Introduction

In the eighty years since its discovery in the mid-1920s, quantum mechanics has gone

from strength to strength. It has repeatedly been proved successful, to a high degree

of accuracy, in domains of application very di�erent from its original one. For exam-

ple, although it was devised for systems of atomic dimensions (10�8cm), it has since

proven accurate for scales much smaller (cf. the nuclear radius of ca. 10�12cm) and

vastly larger (cf. superconductivity and super
uidity, involving scales up to 10�1cm).

Similarly, if we think of domains of application, not as length (or energy) scales, but

as types of \stu�" to which the theory applies. Though quantum mechanics was �rst

devised to apply to matter (i.e. electrons and protons, the more \obvious" constituents

of atoms), it was soon extended to �elds, i.e. the electromagnetic �eld: indeed, matter

soon became regarded as excitations in associated �elds. Similarly, if we think of do-

mains of application as types of force: though �rst devised for electromagnetic forces,

quantum mechanics now successfully describes the weak and strong forces. Indeed,

similarly for `domains' understood naively, as regions of the universe: quantum me-

chanics has also been applied with great success to astronomy|the obvious examples

being the use of nuclear physics in theories of stellar structure and evolution, and of

particle physics in theories of the early universe.

So quantum mechanics has been an amazing success story. I stress this point

at the outset, for two reasons. First: it is, unfortunately, all too easy to get used

to success. Nowadays, both physicists, for whom the various quantum theories have

become everyday professional tools, and the wider scienti�cally literate public, can

easily lose their sense of wonder at this immense success. So it is worth remembering

how contingent, and surprising, it is.

My second reason is more speci�c to work in the foundations and-or philosophy

of quantum theory. This work focusses on the interpretative problems, especially the

measurement problem, that still confront quantum mechanics, despite its immense

empirical success: hence this volume's question `Quo vadis, quantum mechanics?' Of

course, I endorse that focus: it is crucially important to address these problems. But in

addressing them, it is salutary to recall this success, as an intellectual backdrop. Indeed,

not only is it salutary: it might also be heuristically useful|though of course, di�er-

ent researchers, with their di�erent intellectual temperaments, will take this success

to give di�erent heuristic clues about `Quo vadis, quantum mechanics?'. For example,

an Everettian philosopher such as Saunders (??this volume) may see the success of

the established quantum theoretic formalisms as supporting their position: certainly,

heterodox quantum theories such as dynamical models of wave-function collapse face

an enormous task in recovering that success. On the other hand, a theoretical physi-

cist who is searching for a successor to quantum mechanics|whether to solve these

interpretative problems or to reconcile the quantum with general relativity's treatment

of gravitation, or both (such as 't Hooft, ??this volume)|may scrutinize the details of

this empirical success for clues about how present-day quantum mechanics might be

an e�ective, i.e. phenomenological, theory. As 't Hooft wittily puts it: we can ask,
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not 'Quo vadis, quantum mechanics?', but rather `Unde venis?'|`Where do you come

from?'

This paper will likewise ask `Unde venis, quantum mechanics?': though I humbly

admit that I will interpret this question in a retrospective and expository sense, rather

than in 't Hooft's wonderfully forward-looking and creative sense. To be speci�c: I

propose to discuss Hamilton-Jacobi theory as a classical root of quantum mechanics.

One part of this story is well known to physicists and philosophers and historians

of physics. Namely: Hamilton-Jacobi theory as a method of integrating Hamilton's

equations (using Jacobi's theorem, action-angle variables etc.), and the use made of

this integration theory in nineteenth century celestial mechanics, and thereby in the

old quantum theory.

There is however another part of this story that seems much less known by this

community: viz. Hamilton-Jacobi theory understood from the perspective of the cal-

culus of variations (as worked out by such masters as Hilbert and Carath�eodory), and

how this understanding motivates deBroglie's and Schr�odinger's proposal to extend

Hamilton's optico-mechanical analogy, thus creating quantum mechanics (as wave me-

chanics). So I propose to present this part of the story: or rather, since this part could

�ll a book|selected pieces of it! (My (2003, 2003a) discuss some other, philosophical,

aspects.) At the end of the paper, I shall also brie
y return to `Quo vadis?', i.e. to a

current interest in the foundations of quantum theory: viz. the pilot-wave theory|on

which Hamilton-Jacobi theory casts some light. But I begin, in the next Subsection,

with a more detailed prospectus.

1.1 Introducing Hamilton-Jacobi theory

Hamilton-Jacobi theory is a general theory, rich in analytic and geometric ideas, that

uni�es three apparently disparate topics: systems of �rst order ordinary di�erential

equations, �rst order partial di�erential equations, and the calculus of variations.

Roughly speaking, Hamilton-Jacobi theory shows that the following problems are

equivalent:|

(ODE): solving a canonical system of �rst order ordinary di�erential equations (2n

equations for 2n functions of a parameter t in which all variables' �rst derivatives are

given by partial derivatives of one and the same function); e.g. Hamilton's equations

in Hamiltonian mechanics.

(PDE): solving a �rst order partial di�erential equation in which the unknown func-

tion does not occur explicitly; e.g. the Hamilton-Jacobi equation in mechanics.

(CV): solving the \basic" calculus of variations problem of �nding n functions

q1; : : : ; qn of a parameter t that make stationary a line-integral of the form
R
L(qi; _qi; t) dt,

where the dot denotes di�erentiation with respect to t; e.g. Hamilton's principle in

Lagrangian mechanics, or Fermat's principle in geometric optics.

A bit more precisely: elementary Lagrangian and Hamiltonian mechanics show

(ODE) and (CV) to be equivalent for the case of �xed end-points. Hamilton-Jacobi
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theory extends this equivalence by considering, not a single solution of the canonical

equations (a single line-integral) but a whole �eld of solutions, i.e. line-integrals along

all the curves of a space-�lling congruence (so that the end-points lie on hypersurfaces

transverse to the congruence). The initial conditions of a problem then become the

speci�cation of a function's values on such a hypersurface, instead of an initial con�g-

uration and momentum (or an initial and �nal con�guration): hence the occurrence of

partial di�erential equations.

The main aim of this paper is to explain (in an elementary way) these equivalences

and some related results. This explanation will later (Sections 7 and 8) provide us with

a perspective on the optico-mechanical analogy and quantum mechanics (speci�cally,

wave mechanics). But there is also a pedagogic rationale for presenting these results.

Most physicists learn Hamilton-Jacobi theory only as part of analytical mechanics;

and almost all the mechanics textbooks present, in addition to the equivalence of

(ODE) and (CV) for �xed end-points, only the use of Hamilton-Jacobi theory as a

method of integrating Hamilton's equations|indeed rendering the integration trivial.

The central result here is Jacobi's theorem: that given a complete integral of the

Hamilton-Jacobi equation (typically found by separation of variables), one can obtain

solutions of Hamilton's equations just by di�erentiation. This is a remarkable result,

which lies at the centre of a beautiful geometric theory of the integration of �rst order

partial di�erential equations: a theory which reduces the integration problem to that

of integrating a suitable system of ordinary di�erential equations (the characteristic

equations). But almost all the mechanics textbooks present Jacobi's theorem using

just canonical transformation theory: as a result, they do not describe this general

integration theory|and more generally, they do not show the role of geometric ideas,

nor of the calculus of variations with variable end-points.

This textbook tradition is of course understandable. Textbooks must emphasise

problem-solving; and the use of a complete integral of the Hamilton-Jacobi equation to

solve Hamilton's equations, is crucially important, for several reasons. As to problem-

solving, it is `the most powerful method known for exact integration, and many prob-

lems which were solved by Jacobi cannot be solved by other means' (Arnold 1989, p.

261). Besides, it is conceptually important: it leads on to action-angle variables, which

are central both to classical mechanics (e.g. in the Liouville-Arnold theorem, and in

perturbation theory) and the old quantum theory.

But though understandable, this tradition is also regrettable. For the result is that

most physicists understand well only the equivalence of (ODE) and (CV) for �xed

end-points, and a part of the equivalence of (PDE) and (ODE)|the part expressed

by Jacobi's theorem. Besides, they understand these matters only in the context of

mechanics. This is a pity, for two reasons.

First, it is worth stressing that all these equivalences and related other results,

are purely mathematical and so entirely general. Second, the equivalences and results

that get omitted from most mechanics textbooks are at least as rich as those included;

in particular, in their use of geometric ideas. I might add: `in their use of optical
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ideas'. Indeed, Hamilton developed his work in mechanics in deliberate analogy with

his previous work in optics.2 And as we shall see: both Fermat's principle (roughly,

that a light ray travels the path that takes least time) and Huygens's principle (roughly,

that given a wave-front, a later wave-front is the envelope of spherical waves spreading

from the points of the given wave-front) stand at the centre of Hamilton-Jacobi theory.

They involve each of the above mathematical problems, in optical guise: viz. the

description of light in terms of rays (exemplifying (ODE)), in terms of wavefronts (cf.

(PDE)), and by means of variational principles (cf. (CV)).

Accordingly, I propose to expound some of these equivalences and connections, as

mathematics (Sections 2 to 6). Then I will illustrate them with geometric optics and

the optico-mechanical analogy (Sections 7 and 8).

To be both brief and elementary, this exposition must be very selective. In particu-

lar, I will say nothing about: (i) weak solutions; (ii) the use of phase space; (iii) issues

about the global existence of solutions, including focussing and caustics.3 Another

omitted topic lies closer to our concerns: I will not present the theory surrounding

Jacobi's theorem, i.e. Hamilton-Jacobi theory as an integration theory for �rst order

partial di�erential equations. For though I have complained that this is absent from

the mechanics books, it is in some books on mathematical methods.4

Instead, I will adopt an approach that emphasises the calculus of variations. The

main ideas here seem to be due to Carath�eodory and Hilbert. Here again, I must be

selective: I will simply pick out within this approach, one line of thought, found for

example in the �rst half of Rund (1966). (Rund proves some results which I will only

state; and he cites the original papers.) Though selective, this exposition will give a

good sense of the triangle of equivalences between (ODE), (PDE) and (CV); indeed,

we will get such a sense already by the end of Section 3. Sections 4 to 6 will add to this

a discussion of three topics, each leading to the next. They are, respectively: Hilbert's

independent integral; treating the integration variable of the variational problem on

the same footing as the other coordinates; and integration theory.

Thereafter, Sections 7 et seq. return us to physics. Section 7 discusses geometric

2For a glimpse of the history, which I will not discuss, cf. e.g.: for mechanics, Dugas (1988),

Whittaker (1959); for optics, Whittaker (1952), Buchwald (1989); and for mathematics: Kline (1970,

Chap. 30).
3A few pedagogic references: for (i) Logan (1994, Chap. 3), Stakgold (1967); for (ii), Arnold (1989,

Chap.s 8, 9), Littlejohn (1992), Taylor (1996, Section 1.15); for (iii), Arnold (1989, Appendices 11,

16), Benton (1977), Taylor (1996, Section 6.7). Of these topics, (ii) and (iii) are closest to this paper's

interests in geometry, and in the transition between classical and quantum mechanics. For (ii), i.e.

Hamilton-Jacobi theory in phase space, beautifully illustrates symplectic geometry; and (ii) and (iii)

are crucial in both quantization theory and semiclassical mechanics.
4Especially Courant and Hilbert (1962, Chap. II.1-8); cf. also e.g. Webster (1950, Chap 2)

and John (1971, Chap 1). In order to be elementary, I will also avoid all use of modern di�erential

geometry, including even the distinction between contravariant and covariant indices. Though modern

geometry has transformed our understanding of di�erential equations and the calculus of variations

(and the sciences of mechanics and optics), I shall only need the intuitive geometry familiar from

multivariable calculus.
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optics; and Section 8, the optico-mechanical analogy and wave mechanics. Section 8

also leads us back to the foundations of quantum mechanics: which I take up brie
y in

(the last) Section 9. Here I will call attention to the role of Hamilton-Jacobi theory in

the pilot-wave theory of deBroglie and Bohm; and more speci�cally advertise Holland's

recent work (2001, 2001a), which provides a Hamiltonian formulation of the pilot-wave

theory.

2 From the calculus of variations to the Hamilton-

Jacobi equation

2.1 The calculus of variations reviewed

We begin by brie
y reviewing the simplest problem of the calculus of variations; with

which we will be concerned throughout the paper. This is the variational problem (in

a notation suggestive of mechanics)

ÆI := ÆI[qi] = Æ

Z
t1

t0

L(qi; _qi; t)dt = 0 ; i = 1; : : : ; n (2.1)

where [ ] indicates that I is a functional, the dot denotes di�erentiation with respect

to t, and L is to be a C2 (twice continuously di�erentiable) function in all 2n + 1

arguments. L is the Lagrangian or fundamental function; and
R
L dt is the fundamental

integral. We will discuss this only locally; i.e. we will consider a �xed simply connected

region G of a (n + 1)-dimensional real space IRn+1, on which there are coordinates

(q1; : : : ; qn; t) =: (qi; t) =: (q; t).

The singling out of a coordinate t (called the parameter of the problem), to give

a parametric representation of curves q(t) := qi(t), is partly a matter of notational

clarity. But it is of course suggestive of the application to mechanics, where t is

time, q represents the system's con�guration and (qi; t)-space is often called `extended

con�guration space' or `event space'. Besides, the singling out of t re
ects the fact

that though it is usual to assume that L (and so the fundamental integral) is invariant

under arbitrary transformations (with non-vanishing Jacobian) of the qi, we do not

require the fundamental integral to be independent of the choice of t. Indeed we shall

see (at the end of this Subsection and in Section 5) that allowing this dependence is

necessary for making Legendre transformations.5

A necessary condition for I to be stationary at the C2 curve q(t) := qi(t)|i.e.

for ÆI = 0 in comparison with other C2 curves that (i) share with q(t) the end-

points q(t0); q(t1) and (ii) are close to q(t) in both value and derivative throughout

5Of course, the calculus of variations, and Hamilton-Jacobi theory, can be developed on the as-

sumption that the fundamental integral is to be parameter-independent|if it could not be, so much

the worse for relativistic theories! But the details, in particular of how to set up a canonical formalism,

are di�erent from what follows. For these details, cf. e.g. Rund (1966, Chapter 3).
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t0 < t < t1|is that: q(t) satis�es for t0 < t < t1 the n second-order Euler-Lagrange

(also known as: Euler, or as Lagrange!) equations

d

dt
L _qi � Lqi = 0 i = 1; : : : ; n: (2.2)

A curve satisfying these equations is called an extremal.

We will not need to linger on the usual derivation of these equations: we will later

see them derived without using a single �xed pair of end-points. Nor need we linger on

several related matters taken up in the calculus of variations, such as: the distinction

between stationarity and extrema (i.e. maxima or minima), in particular the conditions

for a curve to be an extremum not just a stationary point (e.g. conditions concerning

the second variation of the fundamental integral, or Weierstrass' excess function); the

distinction between weak and strong stationary points and extrema; and the use of

weaker assumptions about the smoothness of the solution and comparison curves.

But it is important to consider the canonical form of our variational problem. In

physics, the most frequent example of this is the expression of Hamilton's principle

within Hamiltonian mechanics; i.e. Hamilton's principle with the integrand a function

of both qs and ps, which are to be varied independently. But the correspondence

between the Lagrangian form of the variational problem (above) and the canonical

form is general (purely mathematical).

Thus, under certain conditions the variational problem eq. 2.1 has an equivalent

form, whose Euler-Lagrange equations are 2n �rst order equations. To this end, we

introduce \momenta"

pi := L _qi ; (2.3)

and (recalling that L is C2) we assume that the Hessian with respect to the _qs does

not vanish in the domain G considered, i.e. the determinant

j L _qi _qj j6= 0 ; (2.4)

so that eq. 2.3 can be solved for the _qi as functions of qi; pi; t.

Then the equations

pi = L _qi _qi = Hpi
L(qi; _qi; t) +H(qi; pi; t) = �i _qipi (2.5)

represent a Legendre transformation and its inverse; where in the third equation _qi are

understood as functions of qi; pi; t according to the inversion of eq. 2.3. The function

H(qi; pi; t) is called the Legendre (or: Hamiltonian) function of the variational problem,

and the qs and ps are called canonically conjugate. It follows that H is C2 in all its

arguments, Ht = �Lt, and j L _qi _qj j=j Hpipj
j
�1. Besides, any H(qi; pi; t) that is C

2 in

all its arguments, and has a non-vanishing Hessian with respect to the ps, j Hpipj
j6= 0,

is the Legendre function of a C2 Lagrangian L given in terms of H by eq. 2.5.

Applying this Legendre transformation, the Euler-Lagrange equations eq. 2.2 go

over to the canonical system

_qi = Hpi
_pi = �Hqi

(= Lqi) : (2.6)
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(A curve satisfying these equations is also called an extremal.) These are the Euler-

Lagrange equations of a variational problem equivalent to the original one, in which

both qs and ps are varied independently, namely the problem

Æ

Z
(�i _qipi �H(qi; pi; t)) dt = 0 : (2.7)

(For more details about eq. 2.3 to 2.7, cf. e.g. Arnold (1989, Chap. 3.14, 9.45.C),

Courant and Hilbert (1953, Chap. IV.9.3; 1962, Chap. I.6) and Lanczos (1986, Chap.

VI.1-4).)

The requirement of a non-vanishing Hessian, eq. 2.4 (equivalently: j Hpipj
j6= 0), is

a crucial assumption. Note in particular these two consequences.

1) The Hamiltonian cannot vanish identically. Proof: If we di�erentiate H =

� _qipi � L = 0 with respect to _qi, we get �i L _qi _qj _qi = 0; which contradicts eq. 2.4.

2) L cannot be homogeneous of the �rst degree in the _qi. That is, we cannot have:

L(qi; � _qi; t) = �L(qi; _qi; t). We shall see in Section 5 that this means the fundamental

integral cannot be parameter-independent.

2.2 Hypersurfaces and congruences

We consider a family of hypersurfaces in our region G of IRn+1

S(qi; t) = � (2.8)

with � 2 IR the parameter labelling the family, and S a C2 function (in all n + 1

arguments). We assume this family covers the region G simply, in the sense that

through each point of G there passes a unique hypersurface in the family.

Let C be a curve

qi = qi(t) (2.9)

of class C2, that lies in G and intersects each hypersurface in the family eq. 2.8 just

once, but is nowhere tangent to a hypersurface. Then � is a function of t along C, with

� :=
d�

dt
= �i

@S

@qi
_qi +

@S

@t
: (2.10)

By construction � 6= 0. We will assume that the Lagrangian L does not vanish along

C. By a suitable labelling of the family of surfaces, we can secure

� > 0 or < 0 according as L > 0 or < 0 (2.11)

for the line-element (qi; _qi; t) of C. Then a tangential displacement along C from P :=

(qi; t) to Q := (qi+dqi; t+dt), i.e. a displacement with components (dqi; dt) = ( _qi; 1)dt,

induces an increment d� in �, and an increment dI = L(qi; _qi; t)dt in I =
R
L dt.
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To connect this family of hypersurfaces with the calculus of variations, we now seek

values of _qi at P such that the direction at P of the curve C, ( _qi; 1)dt, makes dI=d� a

minimum with d� �xed. A necessary condition is that

@

@ _qi

 
dI

d�

!
= 0; i = 1; : : : ; n: (2.12)

But dI

d�
= L

�
and � 6= 0, so that eq. 2.12 reads

@L

@ _qi
�

L

�

@�

@ _qi
= 0 ; (2.13)

that is, using @�
@ _qi

= @S

@qi
from eq. 2.10,

@L

@ _qi
=
L

�

@S

@qi
: (2.14)

A curve C, or its tangent vector ( _qi; 1), that satis�es eq. 2.14, is said to be in the

direction of the geodesic gradient determined by the family of surfaces 2.8.

As it stands, this condition eq. 2.14 can at best yield minima of dI=d�; while we

are interested in minima of dI=dt. But there is a further condition on the family of

surfaces eq. 2.8 that implies that curves obeying eq. 2.14 are solutions of the variational

problem; or rather, to be precise, extremals.

This condition has two equivalent forms; the �rst geometric in spirit, the second

analytic. They are:

(a): that the quantity L=� is constant on each surface, i.e. there is some real

function � such that
L

�
= �(�) (2.15)

where we are to take the directional arguments in L to refer to the geodesic gradient.

(b): that S solves the Hamilton-Jacobi equation.

It is straightforward to show that (a) implies that we can re-parametrize the family

of surfaces in such a way that L = � throughout the region G. That is to say: given

(a), the family can be re-parametrized so that function � is the constant function 1:

�(�) = 1. (Proof: any monotonic function  gives a re-parametrization of the family,

 (S) =  (�), with �� de�ned on analogy with � by �� := d

dt
 (�) =  

0(�)�. Choosing

 (�) :=
R
�

�0
�(s) ds (�0 some constant) yields  0(�) = �(�) so that L

��
�

L

 0(�)�
�

�(�)

 0(�)
= 1:)

So to show (a) and (b) equivalent, we will show that:

(i) given (a) in this special form, i.e. given L = �, S solves the Hamilton-Jacobi

equation; and conversely

(ii) S solving the Hamilton-Jacobi equation implies that L = �.

But it will be clearest, before proving this equivalence, to present two consequences of

L = �, and introduce some terminology.
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First: L = � implies that the geodesic gradient, eq. 2.14, is now given by

@L

@ _qi
= pi =

@S

@qi
: (2.16)

where the �rst equation uses eq. 2.3. Recall now our assumption that the determinant

j L _qi _qj j6= 0, so that eq. 2.3 can be solved in G for the _qi as functions of qi; pi; t:

_qi = qi(qi; pi; t). This now reads as

_qi = _qi(qi;
@S

@qi
; t) ; (2.17)

where the right-hand side is a function of (qi; t) alone (since S is) and has continuous

�rst order derivatives. Then the elementary existence theorem for solutions of �rst

order ordinary di�erential equations implies that eq. 2.17 de�nes an n-parameter

family of curves in the region G, such that each point in G has a unique curve pass

through it, and each curve is a solution of eq. 2.17 in the sense that the components

of its tangent vectors obey eq. 2.17. This family of curves is called the congruence K

belonging to the family of surfaces eq. 2.8.

Second: L = � implies that the increment dI in the fundamental integral I =R
L dt, in passing from a point P1 on the surface S(qi; t) = �1, to an adjacent surface

S = �1 + d�, along a curve of the congruence belonging to the family, obeys

dI = �dt = d� : (2.18)

Integrating this result along members of the congruence, we get: the integral along a

curve of the congruence, from any point P1 on the surface S(qi; t) = �1 to that point

P2 on the surface S(qi; t) = �2 that lies on the same curve of the congruence, is the

same for whatever point P1 we choose. That is:Z
P2

P1

L dt = �2 � �1 : (2.19)

Clearly, the converse also holds: if the fundamental integral taken along curves of the

congruence has the same value for two hypersurfaces, however we choose the end-points

P1; P2 lying in the hypersurfaces, then L = �. So a family of surfaces satisfying the

condition that L = � is called geodesically equidistant with respect to the Lagrangian

L. (Courant and Hilbert (1962, Chap. II.9.2) say `geodetic', not `geodesic'; which has

the advantage of avoiding `geodesic"s possibly confusing connotations of metric and-or

connection.)

Carath�eodory called a family of geodesically equidistant hypersurfaces, together

with the congruence belonging to it, the complete �gure (of the variational problem).

As we shall see, the name is apt, since the complete �gure is central to Hamilton-Jacobi

theory. Also, the congruence is called transversal to the surfaces of the family. The

analytical expression of transversality is that for a displacement (Æqi; Æt) tangential to

a hypersurface in the family, ÆS = 0. That is:

@S

@qi
Æqi +

@S

@t
Æt = 0 : (2.20)
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We turn to showing that: (i) L = � implies that S solves the Hamilton-Jacobi

equation.

Proof: Eq. 2.10 yields

L(qi; _qi; t) = � :=
d�

dt
= �i

@S

@qi
_qi +

@S

@t
(2.21)

where _qi refers to the direction of the geodesic gradient, eq. 2.17, i.e. _qi = _qi(qi;
@S

@qi
; t).

This yields

�

@S

@t
= �L(qi; _qi(qi;

@S

@qi
; t); t) + �i

@S

@qi
_qi(qi;

@S

@qi
; t) : (2.22)

But eq. 2.5 implies that the right-hand side is the Hamiltonian function, but with pi
replaced by @S

@qi
in accordance with eq. 2.16. Thus we have

@S

@t
+H(qi;

@S

@qi
; t) = 0 ; (2.23)

which is the Hamilton-Jacobi equation.

This equation is also a suÆcient condition of a family of surfaces being geodesically

equidistant. That is, (ii): S being a C2 solution in G of the Hamilton-Jacobi equation

implies that L = �, i.e. that the hypersurfaces of constant S are geodesically equidis-

tant.

Proof: Given such a solution S(qi; t), let us de�ne an assignment to each point of

G (sometimes called a �eld) by

pi � pi(qi; t) :=
@S

@qi
: (2.24)

By eq. 2.4, this determines a �eld _qi as in eq. 2.17, and hence a congruence. Then for

the given solution S, a given member C of the congruence, and two given parameter

values �1; �2, we form the fundamental integral along C between the points P1 and

P2 where C intersects the hypersurfaces corresponding to the parameter values �1; �2.

Using the Legendre transformation, eq. 2.5 and the fact that S solves the Hamilton-

Jacobi equation, eq. 2.23, we obtain:

Z
P2

P1

L dt = �

Z
P2

P1

"
H(qi;

@S

@qi
; t)� �ipi _qi

#
dt =

Z
P2

P1

"
@S

@t
dt+ �i

@S

@qi
dq

i

#
=

Z
P2

P1

dS = �2��1:

(2.25)

To sum up: a family of hypersurfaces S = � is geodesically equidistant with re-

spect to the Lagrangian L i� S is a solution of the Hamilton-Jacobi equation whose

Hamiltonian H corresponds by the Legendre transformation to L. And if this holds,

the transversality condition, eq. 2.20, can be written (using eq. 2.23 and 2.24) as

piÆqi �H(qi; pi; t)Æt = 0:6 (2.26)

6Transversality can also be de�ned, without any use of a family of hypersurfaces, or even a function

S, in terms of the fundamental integral being stationary as an end-point of the integral varies on a

given single surface. Cf. e.g. Courant and Hilbert (1953, Chap. IV.5.2).
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3 Canonical and Euler-Lagrange equations; �elds

of extremals

We now study the properties of a congruence K belonging to a family of geodesi-

cally equidistant surfaces. We �rst show that any curve of such a congruence obeys

the canonical and Euler-Lagrange equations. Then we develop the ideas of: a �eld

qi; pi in the region G; and a �eld belonging to a family of (not necessarily geodesically

equidistant) hypersurfaces. Finally we characterize those �elds belonging to geodesi-

cally equidistant hypersurfaces.

3.1 Canonical and Euler-Lagrange equations

The family eq. 2.8 de�nes an assignment of pi :=
@S

@qi
to each point of a member C of

the congruence K. If we di�erentiate the de�nition of p i.e. eq. 2.24 with respect to t

along C, and we di�erentiate the Hamilton-Jacobi equation eq. 2.23, and we then use

the fact (from eq. 2.6) that _qi =
@H

@pi
, we can eliminate the second derivatives of S that

arise in the di�erentiations, and get:

_pi = �

@H

@qi
: (3.1)

To this, we can adjoin _qi =
@H

@pi
, so as to get 2n �rst order ordinary di�erential equations

obeyed by members of K

_pi = �

@H

@qi
; _qi =

@H

@pi
: (3.2)

Note that according to this deduction, these two groups of equations have di�erent

statuses, despite their symmetric appearance. _pi = �
@H

@qi
depends on K belonging to a

family of geodesically equidistant surfaces (i.e. on the Hamilton-Jacobi equation ). But

_qi =
@H

@pi
are identities derived from the theory of the Legendre transformation (cf. eq.

2.6). But this di�erence is not peculiar to our deduction's use of hypersurfaces. The

same di�erence occurs in derivations of these equations in the calculus of variations

with �xed end-points: in the most familiar case, in Lagrangian mechanics i.e. without

use of the canonical integral; (cf. e.g. Lanczos (1986, p. 166-7).

From the canonical equations we can deduce the (Lagrangian form of the) Euler-

Lagrange equations. We substitute pi =
@L

@ _qi
in the left-hand side, and @H

@qi
= �

@L

@qi
in

the right-hand side, of the �rst of eq. 3.2, to get

d

dt

@L

@ _qi
�

@L

@qi
= 0 : (3.3)

11



3.2 Fields

To discuss �elds, we need �rst to consider parametric representations of an arbitrary

smooth congruence of curves covering our region G simply. That is, we consider a

congruence represented by n equations giving qi as C
2 functions of n parameters and t

qi = qi(u�; t) i = 1; : : : ; n (3.4)

where each set of n u� = (u1; : : : ; un) labels a unique curve in the congruence. Thus

there is a one-to-one correspondence (qi; t) $ (u�; t) in appropriate domains of the

variables, with non-vanishing Jacobian

j

@qi

@u�
j 6= 0 : (3.5)

Such a congruence determines tangent vectors ( _qi; 1) at each (qi; t); and thereby

also values of the Lagrangian L(qi(u�; t); _qi(u�; t); t) and of the momentum

pi = pi(u�; t) =
@L

@ _qi
: (3.6)

Conversely, a set of 2n C2 functions qi; pi of (u�; t) as in eqs 3.4 and 3.6, with the qs and

ps related by pi =
@L

@ _qi
, determines a set of tangent vectors, and so a congruence. Such a

set of 2n functions is called a �eld; and if all the curves of the congruence are extremals

(i.e. solutions of the Euler-Lagrange equations), it is called a �eld of extremals.

We say a �eld belongs to a (not necessarily geodesically equidistant) family of hy-

persurfaces given by eq. 2.8 i� throughout the region G eq.s 2.16 and 3.4 are together

satis�ed, i.e. i� we have

pi =
@

@qi
S(qi; t) =

@

@qi
S(qi(u�; t); t) : (3.7)

One can show that a �eld belongs to a family of hypersurfaces i� for all indices �; � =

1; : : : ; n, the Lagrange brackets of the parameters of the �eld, i.e.

[u�; u�] := �i

 
@qi

@u�

@pi

@u�
�

@qi

@u�

@pi

@u�

!
(3.8)

vanish identically.7

We say that a �eld qi = qi(u�; t); pi = pi(u�; t) is canonical if the qi; pi satisfy eq.

3.2. Now we will show that if a canonical �eld belongs to a family of hypersurfaces eq.

2.8, then the members of the family are geodesically equidistant.

7Cf. Rund (1966, p. 28-30). Warning: the role of Lagrange brackets in this theory is sometimes

omitted even in excellent accounts, e.g. Courant and Hilbert (1962, Chap. II.9.4).
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Proof: Di�erentiating eq. 3.7 with respect to t along a member of the congruence,

and substituting on the left-hand side from the �rst of eq. 3.2, we get

�

@H

@qi
=

@
2
S

@qi@qj
_qj +

@
2
S

@qi@t
(3.9)

By the second of eq. 3.2, this is

@
2
S

@qi@t
+
@H

@qi
+
@H

@pj

@
2
S

@qi@qj
= 0 (3.10)

which is
@

@qi

 
@S

@t
+H(qj;

@S

@qj
; t)

!
= 0 (3.11)

which is integrated immediately to give

@S

@t
+H(qj;

@S

@qj
; t) = f(t) (3.12)

with f an arbitrary function of t only. Now we argue (in the usual way, for the

calculus of variations) that this function can be absorbed in H. For suppose the given

Lagrangian were replaced by ~L = L + f(t). The path-independence of the integralR
f(t) dt implies that L and ~L give equivalent variational problems, i.e. the same

curves give stationary values for both
R
L dt and

R ~L dt. Besides, the de�nition of pi,

eq. 2.3, and the canonical equations eq. 2.6 are una�ected, the only change in our

formalism being that H is replaced by ~H = H � f(t). So assuming that L is replaced

by ~L means that eq. 3.12 reduces to the Hamilton-Jacobi equation, eq. 2.23. The

result now follows from result (ii) at the end of Section 2.2.

This result is a kind of converse of our deduction of eq. 3.2. We can sum up this

situation by saying that the canonical equations characterize any �eld belonging to a

family of geodesically equidistant hypersurfaces.

Finally, we should note an alternative to our order of exposition. We assumed

at the outset a family of hypersurfaces, and then discussed an associated congruence

and �eld. But one can instead begin with a single arbitrary surface; then de�ne the

notion of an extremal being transverse to the surface (in terms of the fundamental

integral being stationary as an end-point varies on the surface|cf. footnote 6); then

de�ne a �eld of such transverse extremals; and �nally de�ne other surfaces, geodesically

equidistant to the given one, as surfaces S = constant, where S(qi; t) is de�ned to be

the value of the fundamental integral taken along a transverse extremal from the given

surface (S = 0) to the point (qi; t). This alternative order of exposition is adopted

by Courant and Hilbert (1962, Chap. II.9.2-5), and (more brie
y) by Born and Wolf

(1999, Appendix I.2-4). It has the mild advantage over ours of clearly displaying the

choice of an arbitrary initial surface; (which accords with the solution of a partial

di�erential equation involving an arbitrary function just as the solution of an ordinary

di�erential equation involves an arbitrary constant or constants). It will also come up

again in Sections 6 and 7.
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4 Hilbert's independent integral

A canonical �eld belonging to a geodesically equidistant family of hypersurfaces de�nes

a line-integral which is independent of its path of integration. This integral, named

after its discoverer Hilbert, is important not only in Hamilton-Jacobi theory, but also

in aspects of the calculus of variations which we do not discuss, e.g. the study of

conditions for the fundamental integral to take extreme values.

Suppose we are given a geodesically equidistant family of hypersurfaces covering

region G simply. Consider two arbitrary points P1; P2 2 G lying on hypersurfaces

S = �1; S = �2 respectively; and consider an arbitrary C1 curve C : qi = qi(t) lying in

G and joining P1 and P2. We will write the components of the tangent vector (dqi=dt; 1)

of C as (q0
i
; 1); for we continue to use the dot _ for di�erentiation along the geodesic

gradient of the �eld belonging to S. Now consider the integral along C of dS, so that

the integral is trivially path-independent:

J :=

Z
P2

P1

dS(qi; t) = �2 � �1 =

Z
P2

P1

 
@S

@qi
q
0

i
+
@S

@t

!
dt : (4.1)

We can apply pi =
@S

@qi
and the Hamilton-Jacobi equation to the �rst and second terms

of the integrand respectively, to get a path-independent integral

J =

Z
P2

P1

(piq
0

i
�H(qi; pi; t)) dt = �2 � �1 : (4.2)

We can also Legendre transform to eliminate the pi in favour of _qi, getting

J =

Z
P2

P1

 
L(qi; _qi; t) +

@L

@ _qi
(q0
i
� _qi)

!
dt = �2 � �1 : (4.3)

It is in this form that J is usually called the Hilbert integral.

A �eld

qi = qi(u�; t) pi = pi(u�; t) (4.4)

(assumed to belong to a family of hypersurfaces in the sense of eq. 3.7) is called

a Mayer �eld if substituting qi; pi in the integral in eq. 4.2 yields an integral that

is path-independent. So we have seen that a canonical �eld is a Mayer �eld. One

can show that the converse holds, i.e. any Mayer �eld is canonical (Rund 1966, p.

33). So we have the result: a Mayer �eld is a canonical �eld belonging to a family

of geodesically equidistant hypersurfaces. (It can also be shown that every extremal

curve can be imbedded in a Mayer �eld.)

Combining this with the results of Section 3, we also have: the �eld eq. 4.4 is a

Mayer �eld i� the Lagrange brackets [u�; u�] vanish and the �eld obeys the canonical

equations eq. 3.2.
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5 The parameter as an additional q-coordinate

As we said at the start of Section 2.1, our theory has depended from the outset on the

choice of t; (cf. the fundamental integral eq. 2.1). Indeed, we saw at the end of Section

2.1 that the non-vanishing Hessian eq. 2.4 implies that L cannot be homogeneous of

the �rst degree in the _qi; i.e. we cannot have for all � 2 IR; L(qi; � _qi; t) = �L(qi; _qi; t).

And we shall shortly see that this implies that the fundamental integral cannot be

parameter-independent.

But for some aspects of the theory, especially the next Section's discussion of

Hamilton-Jacobi theory as an integration theory for �rst order partial di�erential equa-

tions, it is both possible and useful to treat t as a coordinate on a par with the qs. So

in this Section, we describe such a treatment and the gain in symmetry it secures.

To have some consistency with our previous notation, we �rst consider a Lagrangian

L(q�; _q�; t) with n � 1 coordinates q�, a parameter t and derivatives _q� = dq�=dt. So

note: in this Section, Greek indices run from 1 to n� 1. So the fundamental integral

along a curve C : q� = q�(t) in a suitable region G of IRn joining points P1; P2 with

parameters t1; t2 is

I =

Z
t2

t1

L(q�; _q�; t) dt : (5.1)

Now we introduce a real C1 function �(t) which is such that d�=dt > 0 for all values

of t under consideration, but is otherwise arbitrary. We write derivatives with respect

to � using dashes, so that

q
0

�
= _q�

 
dt

d�

!
: (5.2)

So with �1 := �(t1); �2 := �(t2), we can write eq. 5.1 as

I =

Z
�2

�1

L

 
q�; q

0

�

d�

dt
; t

!
dt

d�
d� : (5.3)

If we now write qn for t, so that we can write the coordinates on IRn as

qi = (q�; t) = (q�; qn) i = 1; : : : ; n and write
dt

d�
= q

0

n
6= 0 ; (5.4)

then we can write eq. 5.3 as

I =

Z
�2

�1

L
�(qi; q

0

i
) d� (5.5)

where we have de�ned

L
�(qi; q

0

i
) := L

�(q�; t; q
0

�
; q

0

n
) := L

 
q�;

q
0

�

q0
n

; t

!
: (5.6)

We stress that the values of the integrals eq.s 5.1 and 5.5 are equal. But the

latter is by construction parameter-independent, since the choice of � is essentially
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arbitrary. Also L� is by construction positively homogeneous of the �rst degree in the

q
0

i
= (q0

�
; q

0

n
)|i.e. for all positive numbers �; L�(qi; �q

0

i
) = �L(qi; q

0

i
)|irrespective of

the form of the given Lagrangian L. In fact one can easily show that these two features

are equivalent.

For the purposes of the next Section, we will now express the canonical equations

of our variational problem, eq.s 5.1 or 5.5, in the new notation. But note: the total dif-

ferentiation on the left-hand sides of the canonical equations will still be di�erentiation

with respect to the original parameter t|and so indicated by a dot.

Writing the conjugate momenta of L� as p� for the moment, we have

p
�

�
=
@L

�

@q0
�

=
@L

@ _q�

1

q0
n

q
0

n
= p� (5.7)

so that these are identical with the original conjugate momenta; and so we will drop

the � in p�
�
. So the canonical equations for the indices 1; : : : ; n� 1 are given, with the

original Hamiltonian (Legendre) function H(q�; p�; t) as de�ned in eq. 2.5, by

_q� =
@H

@p�
; _p� = �

@H

@q�
: (5.8)

On the other hand, for the new pn, we have

pn :=
@L

�

@q0
n

= L � ��
@L

@ _q�

q
0

�

q0
n

= L � �� p� _q�: (5.9)

Comparing with the de�nition eq. 2.5 of the Hamiltonian (Legendre) function, this is

pn +H(q�; p�; t) = 0: (5.10)

So di�erentiating pn with respect to the original parameter t along an extremal gives

_pn :=
dp

dt
= �

dH

dt
= �

@H

@t
= �

@H

@qn
(5.11)

which �ts well with eq. 5.8; (here �dH

dt
= �

@H

@t
follows as usual from the canonical

equations, i.e. from H's Poisson bracket with itself vanishing identically). But note

that we also have _qn :=
dt

dt
= 1 6= @H

@pn
= �1.

However, we can use the Hamilton-Jacobi equation to overcome this last \wrinkle".

i.e. to get a greater degree of symmetry. We can write the Hamilton-Jacobi equation

of our variational problem eq. 5.1 as

�

 
qi;

@S

@qi

!
= H

 
q�;

@S

@q�
; qn

!
+
@S

@qn
= 0 ; (5.12)

where � is de�ned as a function of 2n variables by

�(qi; pi) := H(q�; p�; qn) + pn : (5.13)
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Now if the p� in eq. 5.13 refer to a �eld of extremals belonging to a solution S(q�; qn)

of the Hamilton-Jacobi equation, so that p� =
@S

@q�
, then by eq.s 5.10 and 5.12, we also

have: pn =
@S

@qn
. Besides, eq. 5.13 implies immediately

@�

@qi
=
@H

@qi
;

@�

@p�
=
@H

@p�
;

@�

@pn
= 1 (= _qn �

dt

dt
) : (5.14)

It follows that we can write the canonical equations eq. 5.8, together with the relations

for qn; pn, in a completely symmetrical way in terms of � as

_qi =
@�

@pi
; _pi = �

@�

@qi
; (5.15)

where, note again, the dot denotes di�erentiation with respect to t.

6 Integrating �rst order partial di�erential equa-

tions

As mentioned in Section 1, we will not expound the usual approach (with Jacobi's

theorem) to Hamilton-Jacobi theory as an integration theory for �rst order partial dif-

ferential equations.8 Instead, we will in this Section brie
y introduce another approach

which exploits the results and concepts of the previous Sections; (for more details, cf.

Rund, 1966, Chap. 2.8).

We will consider a partial di�erential equation of the form

�

 
qi;

@S

@qi

!
= 0 ; i = 1; : : : ; n ; with

@�

@pi
6= 0 for at least one i ; (6.1)

and � of class C2 in all 2n arguments. One of the i for which @�
@pi
6= 0 may be identi�ed

with t, but this is not necessary: as in the previous Section, our discussion can treat

all coordinates of IRn on an equal footing. We shall also assume that (as suggested

by the Hamilton-Jacobi equation) the unknown function S does not occur explicitly in

the equation; but this is not really a restriction, since one can show that the general

case, i.e. an equation in which S occurs, can be reduced to the form of eq. 6.1 by

introducing an additional independent variable.

So the initial value problem we are to solve is: to �nd a function S(qi) (qi 2 G) that

satis�es eq. 6.1 and that assumes prescribed values on a given (n� 1)-dimensional C2

surface, V say, in G. We will indicate how to explicitly construct such a function by

using a congruence of \canonical" curves which solve a canonical system of ordinary

di�erential equations; (so we reduce the integration of the partial di�erential equation

8For an exposition cf. the references in footnote 4. As to the history: Whittaker (1959, p. 264,316)

reports that this theory was developed by Pfa� and Cauchy in 1815-1819, using earlier results by

Lagrange and Monge; i.e. well before Hamilton's and Jacobi's work!

17



to the problem of integrating ordinary di�erential equations). This canonical system

of equations will be suggested by our previous discussion; and the strategy of the

construction will be to adjust the congruence of curves from an initial rather arbitrary

congruence, to one that provides a solution to eq. 6.1.9

Thus our previous discussion (especially Sections 3 and 5) suggests we should con-

sider the system of 2n ordinary di�erential equations, with a new parameter s

_qi :=
dqi

ds
=
@�(qj ; pj)

@pi
; _pi :=

dpi

ds
= �

@�(qj ; pj)

@qi
: (6.2)

These are called the characteristic equations of eq. 6.1. A curve qi = qi(s) of IR
n that

satis�es them is called a characteristic curve of eq. 6.1; it will be an extremal of a

problem in the calculus of variations if eq. 6.1 is the Hamilton-Jacobi equation of such

a problem. Our approach to integrating eq. 6.1 applies to these characteristic equa-

tions theorems about the existence and uniqueness of solutions of ordinary di�erential

equations, so as to secure the existence and uniqueness of solutions to eq. 6.1.

Let us consider an (n � 1)-parameter congruence of characteristic curves, with

parameters u1; : : : ; un�1, so that we write

qi = qi(s; u�) ; pi = pi(s; u�) : (6.3)

Since � is C2, it follows from eq. 6.2 that the functions 6.3 are C2 in s. We will

also assume that these functions are C2 in the u�; and that this congruence covers the

region G simply, with
@(q1; q2; : : : ; qn)

@(s; u1; : : : ; un�1)
6= 0 ; (6.4)

so that we can invert the �rst set of eq. 6.3 for (s; u�), getting

s = s(qi) ; u� = u�(qi) : (6.5)

We shall also write (in G):

�(s; u�) := �(qi(s; u�); pi(s; u�)) : (6.6)

One can now show:

(i): � of eq. 6.6 is an integral of the characteristic equations eq. 6.2, i.e. d�

ds
= 0;

(ii): the Lagrange brackets [u�; s] and [u�; u�] are constant along any member of

the congruence de�ned by eq. 6.2.

We now make some assumptions about the relation of our characteristic congruence

to the given surface V . We will assume that through each point of V there passes a

unique member of the congruence, and that the congruence is nowhere tangent to V .

9We remark at the outset that since|as in previous Sections|we work in a \con�guration space",

not its twice-dimensional \phase space", there are many \canonical congruences", rather than a unique

one; so that this sort of adjustment is possible.

18



Thus each point in V is assigned n� 1 parameter values u� and a value of s; so we can

write s on V as a C2 function of u�, the parameters of the unique curve through the

point. Let us write this as s = �(u�), so that the functions aI(u�) de�ned by

ai(u�) := qi(�(u�); u�) (6.7)

are also C2. Finally we will suppose that we seek a solution of eq. 6.1 which takes the

values c(u�) on V , c prescribed C
2 functions.

That completes the assumptions needed for the construction of a (local) solution

of eq. 6.1 (and the proof of its uniqueness). We end this Section by brie
y describing

the �rst steps of the construction.

The theory of �rst order ordinary di�erential equations implies that the congruence

of characteristic curves for eq. 6.2 is determined if the values of qi and pi are prescribed

on V . The initial values of qi are of course to be given by the ai of eq. 6.7. But as to

the initial values of the pi, i.e. bi de�ned by

bi(u�) := pi(�(u�); u�) ; (6.8)

we have some choice. The strategy of the construction is, roughly speaking, to de�ne a

function S on G, in such a way that when we adjust the bi so that pi =
@S

@qi
, S becomes

a solution of eq. 6.1 in G, possessing the required properties.

We now de�ne a function z = z(s; u�) on G in terms of V , the values c(u�) pre-

scribed on V and the given congruence; in e�ect, this z will be the desired S, once the

bi are suitably adjusted. For each point P 2 G, with its n parameter values (s; u�), the

s-value of the intersection with V of the unique curve through P is given by s = �(u�).

We de�ne the value of z at P by

z(s; u�) := c(u�) +

Z
s

�=�(u�)
�i

"
pi(�; u�)

@�(qi(�; u�); pi(�; u�))

@pi

#
d� ; (6.9)

where the integration is to be taken along the curve through P , from its point of

intersection with V , to P .

We will not go further into the construction of the desired S, except to make two

remarks. (1): Note that eq. 6.9 implies in particular that z(�(u�); u�) = c(u�).

(2): Di�erentiating eq. 6.9 with respect to s and using the �rst set of eq. 6.2 yields

_z �
@z

@s
= �i pi

@�

@pi
= �i pi _qi : (6.10)

This is analogous to the relation _S = �ipi _qi between a scalar function, such as a

solution S of the Hamilton-Jacobi equation and the �eld qi; pi belonging to it, i.e. the

�eld such that pi =
@S

@qi
; cf. eq. 3.7. Indeed, if we use eq. 6.5 to de�ne a function S on

G by

S(qi) := z(s(qi); u�(qi)) (6.11)
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then one can show (again, we omit the details!) that:

(i) we can adjust the bi so as to make pi =
@S

@qi
hold; and

(ii) that this adjustment makes S, as de�ned by eq. 6.11 (and so 6.9), a solution of

eq. 6.1 with the required properties.

7 The characteristic function and geometric optics

In this Section, we follow in Hamilton's (1833, 1834!) footsteps. We introduce the

Hamilton-Jacobi equation via the characteristic function (as do most mechanics text-

books); and then apply these ideas to geometric optics|so our discussion will (at

last!) make contact with physics. The main point will be that the correspondence in

our formalism between canonical extremals and geodesically equidistant hypersurfaces

underpins the fact that both the corpuscular and wave conceptions of light can account

for the phenomena, viz. re
ection and refraction, described by geometric optics.10

We assume that our region G � IRn+1 is suÆciently small that between any two

points P1 = (q1i; t1); P2 = (q2i; t2) there is a unique extremal curve C. To avoid double

subscripts, we will in this Section sometimes suppress the i, writing P1 = (q1; t1); P2 =

(q2; t2) etc. Then the value of the fundamental integral along C is a well-de�ned

function of the coordinates of the end-points; which we call the characteristic function

and write as

S(q1; t1; q2; t2) =

Z
t2

t1

L dt =

Z
t2

t1

(�ipi _qi �H) dt =

Z
�ipidqi �Hdt (7.1)

where the integral is understood as taken along the unique extremal C between the

end-points, and we have used eq. 2.5.

Making arbitrary small displacements (Æq1; Æt1); (Æq2; Æt2) at P1; P2 respectively, and

using the fact that the integral is taken along an extremal, we get for the variation in

S

ÆS := S(q1 + Æq1; t1 + Æt1; q2 + Æq2; t2 + Æt2)� S(q1; t1; q2; t2) =

@S

@t1
Æt1 +

@S

@t2
Æt2 + �i

@S

@q1i
Æq1i + �i

@S

@q2i
Æq2i = [�i piÆqi �H(qj; pj; t)Æt]

t2

t1
: (7.2)

Since the displacements are independent, we can identify each of the coeÆcients on the

two sides of the last equation in eq. 7.2, getting

@S

@t2
= �[H(qi; pi; t)]t=t2 ;

@S

@q2i
= [pi]t=t2 (7.3)

@S

@t1
= [H(qi; pi; t)]t=t1 ;

@S

@q1i
= �[pi]t=t1 (7.4)

10This is an example of what philosophers call \under-determination of theory by data". The

escape from this sort of quandary is of course the consideration of other phenomena: in this case, the

nineteenth-century study of di�raction and interference, which led to the rise of wave optics|cf. the

start of Section 8.
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in which the pi refer to the extremal C at P1 and P2.

These equations are remarkable, since they enable us, if we know the function

S(q1; t1; q2; t2) to determine all the extremals (in mechanical terms: all the possible

motions of the system)|without solving any di�erential equations! For suppose we are

given the initial conditions (q1; p1; t1), (i.e., in mechanical terms: the con�guration and

canonical momenta at time t1), and also the function S. The n equations @S

@q1
= �p1

in eq. 7.4 relate the n + 1 quantities (q2; t2) to the given constants q1; p1; t1. So in

principle, we can solve these equations by a purely algebraic process, to get q2 as a

function of t2 and the constants q1; p1; t1. Finally, we can get p2 from the n equations

p2 =
@S

@q2
in eq. 7.3. So indeed the extremals are found without performing integrations,

i.e. just by di�erentiation and elimination: a very remarkable technique.11

Substituting the second set of equations of eq. 7.3 in the �rst yields

@S

@t2
+H(q2;

@S

@q2
; t2) = 0 : (7.5)

So the characteristic function S(q1; t1; q2; t2) considered as a function of the n + 1

arguments (q2; t2) = (q2i; t2) (i.e. with (q1; t1) �xed) satis�es the Hamilton-Jacobi

equation.

Assuming that this solution S is C2, it follows from result (ii) of Section 2.2 that S

de�nes a family of geodesically equidistant hypersurfaces, namely the geodesic hyper-

spheres (for short: geodesic spheres) with centre P1 = (q1; t1). Thus the sphere with

radius R is given by the equation

S(q1; t1; q2; t2) = R (7.6)

with (q1; t1) considered �xed. So every point P2 on this sphere is connected to the

�xed centre P1 = (q1; t1) by a unique extremal along which the fundamental integral

has value R. These extremals cut the spheres eq. 7.6 transversally.

These geodesic spheres about the various points P1 are special families of hypersur-

faces. For by taking envelopes of these spheres, we can build up successive members of

an arbitrary family of geodesically equidistant hypersurfaces. This is the basic idea of

Huygens' principle in geometric optics. Though Huygens �rst stated this idea as part

of his wave theory of light, it can be stated entirely generally. Indeed, there is a rich

theory here. We will not enter details12, but just state the main idea.

Thus consider some arbitrary solution S(qi; t) of the Hamilton-Jacobi equation

@S

@t
+H(qi;

@S

@qi
; t) = 0 (7.7)

11As Hamilton of course realized. He writes, in the impersonal style of the day, that `Mr Hamilton's

function S ... must not be confounded with that so beautifully conceived by Lagrange for the more

simple and elegant expression of the known di�erential equations [i.e. L]. Lagrange's function states,

Mr Hamilton's function would solve the problem. The one serves to form the di�erential equations of

motion, the other would give their integrals' (1834, p. 514).
12For details, cf. Baker and Copson (1950), Herzberger (1958). In optics, the Hamilton-Jacobi

equation is often called the eikonal equation.
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and thereby the canonical �eld (congruence) K belonging to it, for which pi =
@S

@qi
. Let

h1; h2 be two hypersurfaces corresponding to values �1; �2 of S, i.e. (qi; t) 2 hj; (j =

1; 2) i� S(qi; t) = �j. Let P1 be in h1, and let the canonical extremal C through P1

intersect h2 in P2. Then we already know from eq. 2.19 that the fundamental integral

along C is Z
P2

P1

L dt = �2 � �1 (7.8)

so that P2 is in the geodesic sphere centred on P1 with radius �2 � �1. Huygens'

principle states that more is true: h2 is the envelope of the set of geodesic spheres of

radius �2 � �1 with centres on the hypersurface h1.

As a �nal task for this Section, we brie
y illustrate our formalism with another topic

in geometric optics: namely, Fermat's \least time" principle, which states (roughly

speaking) that a light ray between spatial points P1 and P2 travels by the path that

makes stationary the time taken. This illustration has two motivations. First: together

with the next Section's discussion, it will bring out the optico-mechanical analogy|and

so prompt the transition to wave mechanics.

Second: it illustrates how our formalism allows t to be a coordinate like the qi,

even though it is singled out as the integration variable; (cf. Section 5). In fact,

there are subtleties here. For if one expresses Fermat's principle using time as the

integration variable, one is led to an integrand that is in general, e.g. for isotropic

media, homogeneous of degree 1 in the velocities _qi; and as noted in remark 2) at the

end of Section 2.1, this con
icts with our requirement of a non-vanishing Hessian (eq.

2.4), i.e. with our construction of a canonical formalism. So illustrating our formalism

with Fermat's principle in fact depends on using a spatial coordinate as integration

variable (parameter along the light's path). As we will see in a moment, this gives an

integrand which is in general, even for isotropic media, not homogeneous of degree 1

in the velocities|so that we can apply the theory of Sections 2 onwards.

So now our preferred coordinate t will be (not time, as it will be in mechanics) but

one of just three spatial coordinates (q1; q2; t) for ordinary Euclidean space. In fact,

applications of geometric optics, e.g. to optical instruments which typically have an

axis of symmetry, often suggest a natural choice of the coordinate t.

At a point P = (q1; q2; t) in an optical medium, a direction is given by direction

ratios ( _q1; _q2; _t) = ( _q1; _q2; 1). (So note: the subscripts 1 and 2 now refer to the �rst and

second of three spatial axes \at a single time"|and not to initial and �nal con�gura-

tions.) The speed of a ray of light through P in this direction will in general depend

on both position and direction, i.e. on the �ve variables (qi; _qi; t); i = 1; 2; and so the

speed is denoted by v(qi; _qi; t). If c is the speed of light in vacuo, the refractive index

is de�ned by

n(qi; _qi; t) := c=v(qi; _qi; t) : (7.9)

If n is independent of the directional arguments _qi (respectively: positional arguments

qi; t), the medium is called isotropic (respectively: homogeneous).
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Now let the curve C : qi = qi(t) represent the path of a light-ray between two points

P1; P2 with parameter values t = t1; t = t2. Then the time taken to traverse this curve

(the optical length of the curve) is

T =

Z
t2

t1

ds

v
=

Z
t2

t1

n(qi; _qi; t)

c
[( _q1)

2 + ( _q2)
2 + 1]

1

2 dt =

Z
t2

t1

L dt ; (7.10)

where we have de�ned

L(qi; _qi; t) :=
n(qi; _qi; t)

c
[( _q1)

2 + ( _q2)
2 + 1]

1

2 : (7.11)

However, our discussion will not be concerned with this special form of L. We will

only require that L be C2, and that the Hessian does not vanish, i.e. eq. 2.4 holds.

One immediately veri�es that this is so for isotropic media; (in fact the Hessian is
n(qi;t)

2

c2
[( _q1)

2 + ( _q2)
2 + 1]�2 6= 0).

We can now connect our discussion with the principles of Fermat and Huygens. We

can again take Fermat's principle in the rough form above, viz. that a light ray between

points P1 and P2 travels by the path that makes stationary the time taken. It follows

that if light is instantaneously emitted from a point-source located at P1 = (q1i; t1)

(where now we revert to using `1' to indicate an initial location), then after a time

T the light will register on a surface, F (T ) say, such that each point P2 = (q2i; t2)

on F (T ) (where similarly, `2' indicates a �nal location) is joined to P1 by an extremal

along which the fundamental integral assumes the common value T . This surface is the

wave-front for time T , due to the point-source emission from P1. Clearly, the family

of wave-fronts, as T varies, is precisely the family of geodesic spheres (for L as in eq.

7.11) around P1.

Using the Hamilton-Jacobi equation eq. 7.7 (now with just three independent vari-

ables q1; q2; t), we can readily generalize this, so as to describe the construction of suc-

cessive wave-fronts, given an initial wave-front. Given an arbitrary solution S(q1; q2; t)

of eq. 7.7, and an initial hypersurface h1 given by S(qi; t) = �1, we can construct at

each point P1 2 h1 the unique extremal of the canonical �eld belonging to the family of

hypersurfaces of constant S. By Fermat's principle, each such extremal can represent

a ray emitted from P1. If we de�ne along each such extremal the point P2 such that

that fundamental integral
R
P2

P1
L dt attains the value T , then the locus of these points

P2 is the surface S = �1 + T . Thus we construct a family of geodesically equidistant

hypersurfaces.13 To sum up: each solution of the Hamilton-Jacobi equation represents

a family of wave-fronts, and the canonical �eld belonging to a family represents the

corresponding light rays.

13The vector pi =
@S
@qi

is longer the more rapidly S increases over space, i.e. the more rapidly the

light's time of 
ight increases over space. So Hamilton called pi the vector of normal slowness.
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8 From the optico-mechanical analogy to wave me-

chanics

The rise of wave optics in the nineteeth century led to geometric optics being regarded

as the short-wavelength regime of a wave theory of light. So its equations and principles,

such as the Hamilton-Jacobi equation and Fermat's and Huygens' principles, came to

be seen as e�ective statements derived in the short-wavelength limit of the full wave

theory. But the details of these derivations are irrelevant here.14

For us the relevant point is that (as is often remarked: e.g. Synge (1954, Pref-

ace), Rund (1966, p. 100)): once one considers this development, together with the

optico-mechanical analogy as stated so far (i.e. as it stood for Hamilton), it is natural

to speculate that there might be a wave mechanics, just as there is a wave optics.

That is, it is natural to speculate that classical mechanics might describe the short-

wavelength regime of a wave mechanics, just as geometric optics describes the short-

wavelength regime of a wave optics. This is of course precisely what deBroglie, and

then Schr�odinger, did. To be more speci�c, using our Hamilton-Jacobi perspective:

they proposed that S represented, not an ensemble of systems each fully described by

its classical mechanical state (q; p), but a property of an individual system.15

In this Section, we give a simple sketch of this proposal. But we shall not give details

of deBroglie's and Schr�odinger's own arguments, which are subtle and complicated:

(Dugas (1988, Part V, Chap. 4) gives some of this history). Our sketch is formal,

though in the textbook tradition (Rund (1966, pp. 99-109) and Goldstein (1950, pp.

307-314)); (various books give fuller accounts e.g. using the concepts of Fourier analysis

and the group velocity of a wave-packet, e.g. Messiah (1966, pp. 50-64), Gasiorowicz

(1974, pp. 27-32)). More precisely: we will �rst describe how when we apply Hamilton-

Jacobi theory to a classical mechanical system, the S-function de�nes for each time t

surfaces of constant S in con�guration space, so that by varying t we can calculate the

velocity with which these \wave-fronts" propagate (in con�guration space). So far, so

classical. But then we will postulate that these wave-fronts are surfaces of constant

phase of a time-dependent complex-valued wave-function on con�guration space. This

will lead us, with some heuristic steps, to the Schr�odinger equation and so to wave

mechanics.

Let us consider a classical mechanical system with holonomic ideal constraints,

14cf. e.g. Born and Wolf (1999, Chap. 3.1, 8.3.1); Taylor (1996, Section 6.6-6.7) is a brief but

advanced mathematical discussion.
15Of course, successful proposals often seem \natural" in hindsight; and some authors (e.g. Gold-

stein (1950, p. 314)) maintain that deBroglie's and Schr�odinger's proposal would have seemed merely

idle speculation if it had been made independently of the introduction of Planck's constant and the

subsequent struggles of the old quantum theory. Indeed, even in that context it was obviously: (i)

daringly imaginative (witness the fact that the S wave propagates in multi-dimensional con�guration

space); and (ii) confusing (witness the interpretative struggles over the reality of the wave-function).

In any case, whether the proposal was natural or not|after all, `natural' is a vague word|all can

now agree that their achievement was enormous.
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on which the constraints are solved so as to give a n-dimensional con�guration space

Q, on which the qi are independent variables. More technically, Q is a manifold,

on which the qi are a coordinate system, and on which the kinetic energy de�nes a

metric. But we shall not go into this aspect: we shall simply assume Q is equipped

with the usual Euclidean metric on IRn, and that the qi are rectangular coordinates.

We further assume that any constraints are time-independent (scleronomous); i.e. any

con�guration in Q is possible for the system throughout the time period in question.

The result of these assumptions is that the region G � IRn+1 for which the formalism

of Sections 2 has been developed is now assumed to be an `event space' or `extended

con�guration space' of the form Q�T , where T � IR is some real interval representing

a period of time. Finally, we will assume that our system is conservative, with energy

E.

Now we will presume, without rehearsing the usual equations (cf. especially Sec-

tion 2.1 and eq.s 7.1 to 7.5), that using the above assumptions, the Lagrangian and

Hamiltonian mechanics of our system has been set up. So if S(qi; t) = � is a family of

geodesically equidistant hypersurfaces associated with the system (each hypersurface

n-dimensional), the family covering our region G simply, then S satis�es the Hamilton-

Jacobi equation in the form @S

@t
+ E = 0. This can be immediately integrated to give,

for some function S� of qi only,

S(qi; t) = S
�(qi)� Et : (8.1)

(So the pi of the canonical �eld depend only on S�: pi :=
@S

@qi
= @S

�

@qi
.) So the hypersur-

faces of our family can be written as

S
�(qi) = Et + � : (8.2)

For any �xed t, a hypersurface of constant S, considered as a hypersurface in the

con�guration space Q (a hypersurface of dimension n�1, i.e. co-dimension 1), e.g. the

surface S(qi; t) = �1, coincides with a hypersurface of constant S�: for this example,

the surface S� = �1 +Et. But while the surfaces of constant S� are time-independent,

the surfaces of constant S vary with time. So we can think of the surfaces of constant

S as propagating through Q. With this picture in mind, let us calculate their velocity.

(We can state the idea of surfaces in Q of constant S more rigorously, using our

assumption that the region G � IRn+1 is of the form Q � T . This implies that any

equation of constant time, t = constant, de�nes a n-dimensional submanifold of G

which is a \copy" of Q; let us call it Qt. Each hypersurface in eq. 8.2 de�nes a

(n� 1)-dimensional submanifold of Qt (a hypersurface in Qt of co-dimension 1) given

by

S
�(qi) = Et+ constant, (with t = constant): (8.3)

Then, as in the previous paragraph: �xing the constant � but letting t vary, and iden-

tifying the di�erent copies Qt of Q, we get a family of (n�1)-dimensional submanifolds

of Q, parametrized by t. This can be regarded as a wave-front propagating over time

through the con�guration space Q.)
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Let us �x a constant � and a time t; let P = (qi) 2 Q be a point on the surface

S = S
�

�Et = �; and consider the normal to this surface (pointing in the direction of

propagation) at P . (So the ith component ni of the unit normal is ni =j rS
�

j
�1 @S

�

@qi
.)

Consider a point P 0 = (qi + dqi) that lies a distance ds from P along this normal: (so

dqi = nids). P
0 is on a subsequent wave-front (i.e. with the same value � of S, but not

of S�) at time t + dt, where by eq. 8.2

dS
� = �i

@S
�

@qi
dqi = E dt; (8.4)

which, dividing by ds, yields

dS
�

ds
� j rS

�

j = �i
@S

�

@qi

dqi

ds
= E

dt

ds
: (8.5)

But we also have

pi =
@S

�

@qi
) p := j p j = j rS

�

j : (8.6)

Combining these equations, eq. 8.5 and 8.6, we deduce that the speed u of the wavefront

S = �, i.e. u := ds

dt
, is

u =
E

p
: (8.7)

So far, so classical. But now we postulate that the wave-fronts eq. 8.2 (or 8.3)

are surfaces of constant phase of a suitable time-dependent complex-valued function  

on Q. This postulate, together with some heuristic steps (including a judicious iden-

ti�cation of Planck's constant!), will give us a heuristic derivation of the Schr�odinger

equation. We will assume to begin with that we can write the postulated function

 =  (qi; t) as

 = R(qi; t) exp[�2�i(�t� �(qi))] ; (8.8)

with R and � real; so that �t � � is the phase, and (apart from R's possible t-

dependence) � is the frequency associated with  . Then our postulate is that there is

some constant h such that

h(�t� �(qi)) = (Et� S
�(qi)) : (8.9)

But this must hold for all qi; t, so that

E = h� ; S
�(qi) = h�(qi) : (8.10)

So the postulated frequency is proportional to the system's energy. Then, using our

previous calculation of the speed u, and the relation u = �� with � the wavelength, we

deduce that the wavelength is inversely proportional to the magnitude of the system's

momentum. That is:

u = �� =
E

p
) � =

h

p
: (8.11)
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Substituting eq. 8.10 in eq. 8.8, we can write  as

 = R(qi; t) exp

�
2�i

h
(S�(qi)� Et)

�
= R(qi; t) exp

�
i

�h
(S�(qi)� Et)

�
(8.12)

where we have de�ned �h := h

2�
.

Assuming now that R has no qi-dependence, di�erentiation of eq. 8.12 with respect

to qi yields
@ 

@qi
=
i

�h

@S
�

@qi
 (8.13)

Recalling that pi =
@S

�

@qi
, this is an eigenvalue equation, and suggests that we associate

with the ith component of momentum pi of a system whose R has no qi-dependence,

the operator p̂i on wave-functions  de�ned by

p̂i :=
�h

i

@

@qi
; i = 1; : : : ; n : (8.14)

Let us postulate this association also for qi-dependent R. Then this suggests we also

associate with the energy of the system, the operator Ĥ on wave-functions de�ned by

Ĥ := H(qi; p̂i; t) ; (8.15)

(where we understand qi, and functions of it, as operating on wave-functions by ordi-

nary multiplication).

But assuming now that R has no t-dependence, di�erentiation of eq. 8.12 with

respect to t yields

i�h
@ 

@t
= E (8.16)

suggesting we should associate with the energy of a system, the operator Ê on wave-

functions de�ned by

Ê := i�h
@

@t
(8.17)

(By the way, this de�nition is also motivated by treating time as a coordinate along with

the qi; cf. the discussion in Section 5. Thus eq. 8.14 suggests we de�ne p̂n+1 :=
�h
i

@

@t
;

and when this is combined with eq. 8.17, we get

p̂n+1 + Ê = 0 (8.18)

which is analogous to eq. 5.10.)

If for general R(qi; t) we endorse both these suggestions|i.e. we identify the actions

on eq. 8.12 of these two suggested operators , eq. 8.15 and 8.17|then we get

Ĥ = i�h
@ 

@t
; (8.19)

which, once we identify h as Planck's constant, is the Schr�odinger equation.
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9 A glance at the pilot-wave theory

So much by way of sketching the Hamilton-Jacobi perspective on the heuristic route to

wave mechanics. In this �nal Section, I will brie
y return to this volume's question `Quo

vadis, quantum mechanics?', i.e. to the foundations of quantum theory. First, I want to

stress that Hamilton-Jacobi theory remains an important ingredient in various research

programmes in this �eld. Prominent among these is the trajectory representation of

quantum mechanics, pioneered by Floyd, and Faraggi and Matone. I cannot go into

details, but would recommend, as places to begin reading, both Floyd (2002) and

Faraggi and Matone (2000). (Besides, Section 1 of the latter ends with some references

to other research programmes that use Hamilton-Jacobi theory.)

I shall instead end on Hamilton-Jacobi theory in the context of another prominent

research programme (related to the trajectory representation): deBroglie's and Bohm's

pilot-wave theory. Again, this is a large topic, and we only wish to advertise the recent

work of Holland (2001, 2001a).

First, we recall (Bohm (1952, p. 169), Bohm and Hiley (1993, p. 28), Holland

(1993, pp. 69,134)) that:

(i): Writing  = R(qi; t) exp(iS(qi; t)=�h) (R; S real) in the one-particle Schr�odinger

equation, eq. 8.19 with Ĥ := �h2

2m
r

2 + V gives

@S

@t
+

1

2m
(rS)2 +Q+ V = 0 with Q :=

��h2

2m

r
2
R

R
; (9.1)

which looks like the classical Hamilton-Jacobi equation (cf. eq. 2.23) of a particle in

an external potential that is the sum of V and Q, which Bohm called the `quantum po-

tential'; indeed Bohm and Hiley call eq. 9.1 the \quantum Hamilton-Jacobi equation";

and
@�

@t
+

1

m
r � (�rS) = 0 with � := R

2
: (9.2)

(ii): These equations suggest the quantum system comprises both a wave, propagat-

ing according to the Schr�odinger equation, and a particle, which has (a) a continuous

trajectory governed by the wave according to the guidance equation

m
dqi

dt
=
@S

@qi
jqi=qi(t) ; (9.3)

and (b) a probability distribution given at all times by j  j2= R
2.

Besides, comments and equations similar to those in (i) and (ii) apply when we

insert  = R exp(iS=�h) into the many-particle Schr�odinger equation (Bohm (1952, p.

174), Bohm and Hiley (1993, p. 56 et seq.), Holland (1993, pp. 277 et seq.)).

So far, so good. But Holland (2001, p. 1044) points out that the relation of pilot-

wave theory to classical Hamilton-Jacobi theory is not transparent. In particular, he

points out:

1): The guidance law eq. 9.3 is `something of an enigma'. It looks like one half of
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a canonical transformation that trivializes the motion of a classical system (by trans-

forming to a set of phase space coordinates that are constant in time. But what about

the other half; and more generally, can eq. 9.3 be somehow related to a Hamiltonian

or Hamilton-Jacobi theory?

2): Q's dependence on S (through eq. 9.2) means that the \quantum Hamilton-

Jacobi equation" eq. 9.1 in e�ect contains higher derivatives of S|wholly unlike a

classical Hamilton-Jacobi equation.

So Holland undertakes an extensive investigation of this relation. More precisely,

he undertakes to formulate the pilot-wave theory as a Hamiltonian theory. He does

this by assessing a treatment of Q as a �eld function of qi on a par with the classical

potential V ; i.e. a treatment that takes as the Hamiltonian of the (one-particle) system

H(qi; pi; t) =
1

2m
�ip

2
i
+Q(qi; t) + V (qi; t) (9.4)

He emphasises that such a treatment faces three obstacles. In brief, they are:

(a): As we just mentioned in 2), Q depends on S and so presumably, by p = @S

@q
,

on p. So in a Hamiltonian (phase space) treatment, it seems wrong to take Q as a

function only of q.

(b): The free choice of initial positions and momenta in a Hamiltonian treatment

will mean that most motions, projected on q, do not give the orthodox quantal distri-

bution, in the way that eq. 9.3 and j  j2= R
2 does.

(c): Is such a treatment compatible with the Hamiltonian description of the Schr�odinger

equation? For it to be so, we have to somehow formulate the particle-wave interaction

so as to prevent a back-reaction on the wave.

However, Holland goes on to show (2001, 2001a) that these obstacles can be over-

come. That is, he vindicates the proposal, eq. 9.4, with a Hamiltonian theory of the

interacting wave-particle system. But we cannot enter details. It must suÆce to list

some features of his work. In short, his approach:

(1): generalizes a canonical treatment of a classical particle and associated ensem-

ble;

(2): necessitates the introduction of an additional �eld of which the particle is the

source;

(3): makes the \quantum Hamilton-Jacobi equation" and the continuity equation

eq. 9.2 (and other equations for the evolution of particle and �eld variables) come out

as Hamilton equations;

(4): interprets p = @S

@q
as a constraint on the phase space coordinates of the wave-

particle system;

(5): gives a general formula expressing the condition that the particle's phase space

distribution, projected on q, gives the orthodox quantal distribution; and �nally,

(6): yields a Hamilton-Jacobi theory of the wave-particle system.

To conclude: I hope to have shown that Hamilton-Jacobi theory, understood from

the perspective of the calculus of variations, gives us insight into both mechanics and

optics|and that, as illustrated by this last Section, Hamilton-Jacobi theory is an
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important ingredient in current attempts to answer the question, `Quo vadis, quantum

mechanics?'.
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